# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This dataset contains example data for running through the multiplexed imaging data pipeline in Ark Analysis: https://github.com/angelolab/ark-analysis. Dataset Fov renaming: TMA2_R8C3 -> fov0 TMA6_R4C5 -> fov1 TMA7_R5C4 -> fov2 TMA10_R7C3 -> fov3 TMA11_R9C6 -> fov4 TMA13_R8C5 -> fov5 TMA17_R9C2 -> fov6 TMA18_R9C2 -> fov7 TMA21_R2C5 -> fov8 TMA21_R12C6 -> fov9 TMA24_R9C1 -> fov10 """ import datasets import pathlib # Find for instance the citation on arxiv or on the dataset repo/website _CITATION = """\ @InProceedings{huggingface:dataset, title = {Ark Analysis Example Dataset}, author={Angelo Lab}, year={2022} } """ # TODO: Add description of the dataset here # You can copy an official description _DESCRIPTION = """\ This dataset contains 11 Field of Views (FOVs), each with 22 channels. """ _HOMEPAGE = "https://github.com/angelolab/ark-analysis" _LICENSE = "https://github.com/angelolab/ark-analysis/blob/main/LICENSE" # The HuggingFace Datasets library doesn't host the datasets but only points to the original files. # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method) _URL_DATA = { "image_data": "./data/image_data.zip", "cell_table": "./data/segmentation/cell_table.zip", "deepcell_output": "./data/segmentation/deepcell_output.zip", "example_pixel_output_dir": "./data/pixie/example_pixel_output_dir.zip", "example_cell_output_dir": "./data/pixie/example_cell_output_dir.zip", "spatial_lda": "./data/spatial_analysis/spatial_lda.zip", "post_clustering": "./data/post_clustering.zip" } _URL_DATASET_CONFIGS = { "segment_image_data": {"image_data": _URL_DATA["image_data"]}, "cluster_pixels": { "image_data": _URL_DATA["image_data"], "cell_table": _URL_DATA["cell_table"], "deepcell_output": _URL_DATA["deepcell_output"], }, "cluster_cells": { "image_data": _URL_DATA["image_data"], "cell_table": _URL_DATA["cell_table"], "deepcell_output": _URL_DATA["deepcell_output"], "example_pixel_output_dir": _URL_DATA["example_pixel_output_dir"], }, "post_clustering": { "image_data": _URL_DATA["image_data"], "cell_table": _URL_DATA["cell_table"], "deepcell_output": _URL_DATA["deepcell_output"], "example_cell_output_dir": _URL_DATA["example_cell_output_dir"], }, "fiber_segmentation": { "image_data": _URL_DATA["image_data"], }, "LDA_preprocessing": { "image_data": _URL_DATA["image_data"], "cell_table": _URL_DATA["cell_table"], }, "LDA_training_inference": { "image_data": _URL_DATA["image_data"], "cell_table": _URL_DATA["cell_table"], "spatial_lda": _URL_DATA["spatial_lda"], }, "neighborhood_analysis": { "image_data": _URL_DATA["image_data"], "cell_table": _URL_DATA["cell_table"], "deepcell_output": _URL_DATA["deepcell_output"], }, "pairwise_spatial_enrichment": { "image_data": _URL_DATA["image_data"], "cell_table": _URL_DATA["cell_table"], "deepcell_output": _URL_DATA["deepcell_output"], "post_clustering": _URL_DATA["post_clustering"], } } # Note: Name of the dataset usually match the script name with CamelCase instead of snake_case class ArkExample(datasets.GeneratorBasedBuilder): """The Dataset consists of 11 FOVs""" VERSION = datasets.Version("0.0.5") # You will be able to load one or the other configurations in the following list with BUILDER_CONFIGS = [ datasets.BuilderConfig( name="segment_image_data", version=VERSION, description="This configuration contains data used by notebook 1 - Segment Image Data.", ), datasets.BuilderConfig( name="cluster_pixels", version=VERSION, description="This configuration contains data used by notebook 2 - Pixel Clustering (Pixie Pipeline #1).", ), datasets.BuilderConfig( name="cluster_cells", version=VERSION, description="This configuration contains data used by notebook 3 - Cell Clustering (Pixie Pipeline #2).", ), datasets.BuilderConfig( name="post_clustering", version=VERSION, description="This configuration contains data used by notebook 4 - Post Clustering.", ), datasets.BuilderConfig( name="fiber_segmentation", version=VERSION, description="This configuration contains data used by the Fiber Segmentation Notebook.", ), datasets.BuilderConfig( name="LDA_preprocessing", version=VERSION, description="This configuration contains data used by the Spatial LDA - Preprocessing Notebook." ), datasets.BuilderConfig( name="LDA_training_inference", version=VERSION, description="This configuration contains data used by the Spatial LDA - Training and Inference Notebook." ), datasets.BuilderConfig( name="neighborhood_analysis", version=VERSION, description="This configuration contains data used by the Neighborhood Analysis Notebook." ), datasets.BuilderConfig( name="pairwise_spatial_enrichment", version=VERSION, description="This configuration contains data used by the Pairwise Spatial Enrichment Notebook." ) ] def _info(self): # This is the name of the configuration selected in BUILDER_CONFIGS above if self.config.name in [ "segment_image_data", "cluster_pixels", "cluster_cells", "post_clustering", "fiber_segmentation", "LDA_preprocessing", "LDA_training_inference", "neighborhood_analysis", "pairwise_spatial_enrichment", ]: features = datasets.Features( {f: datasets.Value("string") for f in _URL_DATASET_CONFIGS[self.config.name].keys()} ) else: ValueError(f"Dataset name is incorrect, options include {list(_URL_DATASET_CONFIGS.keys())}") return datasets.DatasetInfo( # This is the description that will appear on the datasets page. description=_DESCRIPTION, # This defines the different columns of the dataset and their types features=features, # Here we define them above because they are different between the two configurations # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and # specify them. They'll be used if as_supervised=True in builder.as_dataset. # supervised_keys=("sentence", "label"), # Homepage of the dataset for documentation homepage=_HOMEPAGE, # License for the dataset if available license=_LICENSE, # Citation for the dataset citation=_CITATION, ) def _split_generators(self, dl_manager): # This method is tasked with downloading/extracting the data and defining the splits depending on the configuration urls = _URL_DATASET_CONFIGS[self.config.name] data_dirs = {} for data_name, url in urls.items(): dl_path = pathlib.Path(dl_manager.download_and_extract(url)) data_dirs[data_name] = dl_path return [ datasets.SplitGenerator( name=self.config.name, # These kwargs will be passed to _generate_examples gen_kwargs={"dataset_paths": data_dirs}, ), ] # method parameters are unpacked from `gen_kwargs` as given in `_split_generators` def _generate_examples(self, dataset_paths): yield self.config.name, dataset_paths