File size: 5,950 Bytes
0e7566a a20889f 0e7566a a20889f 0e7566a a20889f 0e7566a a20889f 0e7566a a20889f 0e7566a a20889f 0e7566a a20889f 0e7566a a20889f 0e7566a a20889f 0e7566a a20889f 0e7566a a20889f 0e7566a a20889f 0e7566a a20889f 0e7566a a20889f 0e7566a a20889f 714f678 0e7566a 7f8aa66 0e7566a 7f8aa66 0e7566a d37abee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: Address all TODOs and remove all explanatory comments
"""TODO: Add a description here."""
import os
import csv
import json
import datasets
import pandas as pd
from scipy.io import wavfile
_CITATION = """\
@inproceedings{Raju2022SnowMD,
title={Snow Mountain: Dataset of Audio Recordings of The Bible in Low Resource Languages},
author={Kavitha Raju and V. Anjaly and R. Allen Lish and Joel Mathew},
year={2022}
}
"""
_DESCRIPTION = """\
The Snow Mountain dataset contains the audio recordings (in .mp3 format) and the corresponding text of The Bible
in 11 Indian languages. The recordings were done in a studio setting by native speakers. Each language has a single
speaker in the dataset. Most of these languages are geographically concentrated in the Northern part of India around
the state of Himachal Pradesh. Being related to Hindi they all use the Devanagari script for transcription.
"""
_HOMEPAGE = "https://gitlabdev.bridgeconn.com/software/research/datasets/snow-mountain"
_LICENSE = ""
_URL = "https://gitlabdev.bridgeconn.com/software/research/datasets/snow-mountain/"
_FILES = {
"hindi": {
"train_500": "data/experiments/hindi/train_500.csv",
# "val_500": "data/experiments/hindi/val_500.csv",
# "train_1000": "data/experiments/hindi/train_1000.csv",
# "val_1000": "data/experiments/hindi/val_1000.csv",
# "test_common": "data/experiments/hindi/test_common.csv",
},
# "haryanvi": {
# "train_500": "data/experiments/haryanvi/train_500.csv",
# "val_500": "data/experiments/haryanvi/val_500.csv",
# "train_1000": "data/experiments/haryanvi/train_1000.csv",
# "val_1000": "data/experiments/haryanvi/val_1000.csv",
# "test_common": "data/experiments/haryanvi/test_common.csv",
# }
}
class Test(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="hindi", version=VERSION, description="Hindi data"),
# datasets.BuilderConfig(name="haryanvi", version=VERSION, description="Haryanvi data"),
]
DEFAULT_CONFIG_NAME = "hindi"
def _info(self):
features = datasets.Features(
{
# "unnamed": datasets.Value("int64"),
"sentence": datasets.Value("string"),
"path": datasets.Value("string"),
"audio": datasets.Audio(sampling_rate=16_000),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
supervised_keys=("sentence", "path"),
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
# urls_to_download = {
# "train_500": os.path.join(_URL, _FILES[self.config.name]["train_500"]),
# "val_500": os.path.join(_URL, _FILES[self.config.name]["val_500"]),
# "train_1000": os.path.join(_URL, _FILES[self.config.name]["train_1000"]),
# "val_1000": os.path.join(_URL, _FILES[self.config.name]["val_1000"]),
# "test_common": os.path.join(_URL, _FILES[self.config.name]["test_common"]),
# }
downloaded_files = dl_manager.download(_FILES[self.config.name])
train_splits = [
datasets.SplitGenerator(
name="train_500",
gen_kwargs={
"filepath": downloaded_files["train_500"],
},
),
# datasets.SplitGenerator(
# name="train_1000",
# gen_kwargs={
# "filepath": downloaded_files["train_1000"],
# },
# ),
]
# dev_splits = [
# datasets.SplitGenerator(
# name="val_500",
# gen_kwargs={
# "filepath": downloaded_files["val_500"],
# },
# ),
# datasets.SplitGenerator(
# name="val_1000",
# gen_kwargs={
# "filepath": downloaded_files["val_1000"],
# },
# ),
# ]
# test_splits = [
# datasets.SplitGenerator(
# name="test_common",
# gen_kwargs={
# "filepath": downloaded_files["test_common"],
# },
# ),
# ]
dev_splits = []
test_splits = []
return train_splits + dev_splits + test_splits
def _generate_examples(self, filepath):
key = 0
cwd = os.getcwd()+'/'
with open(filepath) as f:
data_df = pd.read_csv(f,sep=',')
transcripts = []
for index,row in data_df.iterrows():
samplerate, audio_data = wavfile.read(row["path"])
yield key, {
"sentence": row["sentence"],
"path": row["path"],
"audio":{"path": row["path"], "bytes": audio_data}
}
key+=1
|