|
|
|
"""Credit Card Transactions |
|
|
|
Automatically generated by Colab. |
|
|
|
Original file is located at |
|
https://colab.research.google.com/drive/1u6Uvg6spSXdnjrvtQi8OjhJOGywYvsNG |
|
""" |
|
|
|
import numpy as np |
|
import pandas as pd |
|
import matplotlib.pyplot as plt |
|
import seaborn as sns |
|
from sklearn.tree import DecisionTreeClassifier |
|
from sklearn.model_selection import train_test_split |
|
from sklearn.ensemble import RandomForestClassifier |
|
from sklearn.model_selection import GridSearchCV |
|
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report, ConfusionMatrixDisplay |
|
from sklearn.ensemble import GradientBoostingClassifier |
|
|
|
df = pd.read_csv('creditcard.csv') |
|
|
|
df.head() |
|
|
|
df.shape |
|
|
|
df.columns |
|
|
|
df.info() |
|
|
|
df.describe() |
|
|
|
df.isnull().sum() |
|
|
|
df.duplicated().sum() |
|
|
|
df.drop_duplicates(inplace=True) |
|
|
|
df.shape |
|
|
|
df['Class'].unique() |
|
|
|
df['Class'].value_counts() |
|
|
|
fraud = df[df['Class'] == 1] |
|
normal = df[df['Class'] == 0] |
|
normal_percentage = len(normal)/(len(fraud)+len(normal)) |
|
fraud_percentage = len(fraud)/(len(fraud)+len(normal)) |
|
print('Percentage of fraud transactions = ', round(fraud_percentage * 100, 3)) |
|
print('Percentage of normal transactions = ', round(normal_percentage * 100, 3)) |
|
|
|
plt.figure(figsize=(9,7)) |
|
sns.countplot(data=df,x='Class',palette=['blue', 'red']) |
|
plt.title("Number of Normal and Fraud Transactions"); |
|
|
|
plt.figure(figsize=(8,6)) |
|
sns.FacetGrid(df, hue="Class", height=6,palette=['blue','red']).map(plt.scatter, "Time", "Amount").add_legend() |
|
plt.show() |
|
|
|
plt.figure(figsize=(10,7)) |
|
sns.heatmap(data=df.corr(),cmap='mako') |
|
plt.show() |
|
|
|
X = df.drop('Class',axis=1) |
|
y = df['Class'] |
|
|
|
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) |
|
|
|
|
|
|
|
def model_train_test(model,X_train,y_train,X_test,y_test): |
|
model.fit(X_train,y_train) |
|
prediction = model.predict(X_test) |
|
print('Accuracy = {}'.format(accuracy_score(y_test,prediction))) |
|
print(classification_report(y_test,prediction)) |
|
matrix = confusion_matrix(y_test,prediction) |
|
dis = ConfusionMatrixDisplay(matrix) |
|
dis.plot() |
|
plt.show() |
|
|
|
rf_model = RandomForestClassifier() |
|
|
|
model_train_test(rf_model,X_train,y_train,X_test,y_test) |
|
|
|
Decision_tree = DecisionTreeClassifier() |
|
|
|
model_train_test(Decision_tree,X_train,y_train,X_test,y_test) |