antitheft159
commited on
Commit
•
cc7f4e6
1
Parent(s):
56714c8
Upload diamondeconomicdata_159.py
Browse files- diamondeconomicdata_159.py +87 -0
diamondeconomicdata_159.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""DiamondEconomicData.159
|
3 |
+
|
4 |
+
Automatically generated by Colab.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1S_CVJWdykN_6LSpjdHLcSQhC6UVUcFDe
|
8 |
+
"""
|
9 |
+
|
10 |
+
!pip install ydata-profiling
|
11 |
+
|
12 |
+
import pandas as pd
|
13 |
+
import numpy as np
|
14 |
+
import matplotlib as plt
|
15 |
+
import seaborn as sns
|
16 |
+
import tensorflow as tf
|
17 |
+
from ydata_profiling import ProfileReport
|
18 |
+
|
19 |
+
df = pd.read_csv('/content/M6_T2_V1_Diamonds.csv')
|
20 |
+
|
21 |
+
df.sample(5)
|
22 |
+
|
23 |
+
print(df.head())
|
24 |
+
|
25 |
+
df.info()
|
26 |
+
|
27 |
+
df.isnull().sum
|
28 |
+
|
29 |
+
df.describe()
|
30 |
+
|
31 |
+
df.duplicated().sum()
|
32 |
+
|
33 |
+
df.head()
|
34 |
+
|
35 |
+
df_numeric = df.select_dtypes(include=[np.number])
|
36 |
+
df_numeric
|
37 |
+
|
38 |
+
df_numeric.corr()['price']
|
39 |
+
|
40 |
+
df['cut'].value_counts().plot(kind='bar')
|
41 |
+
|
42 |
+
df['color'].value_counts().plot(kind='bar')
|
43 |
+
|
44 |
+
df['clarity'].value_counts().plot(kind='bar')
|
45 |
+
|
46 |
+
df['cut'].value_counts().plot(kind='pie', autopct='%.2f')
|
47 |
+
|
48 |
+
df['color'].value_counts().plot(kind='pie', autopct='%.2f')
|
49 |
+
|
50 |
+
df['clarity'].value_counts().plot(kind='pie', autopct='%.2f')
|
51 |
+
|
52 |
+
sns.histplot(df['price'])
|
53 |
+
|
54 |
+
sns.histplot(df['x'], bins=10)
|
55 |
+
|
56 |
+
sns.histplot(df['y'], bins=50)
|
57 |
+
|
58 |
+
sns.histplot(df['z'], bins=50)
|
59 |
+
|
60 |
+
sns.distplot(df['price'])
|
61 |
+
|
62 |
+
sns.distplot(df['x'])
|
63 |
+
|
64 |
+
sns.distplot(df['y'])
|
65 |
+
|
66 |
+
sns.distplot(df['z'])
|
67 |
+
|
68 |
+
sns.boxplot(df['price'])
|
69 |
+
|
70 |
+
sns.boxplot(df['x'])
|
71 |
+
|
72 |
+
sns.boxplot(df['y'])
|
73 |
+
|
74 |
+
sns.boxplot(df['z'])
|
75 |
+
|
76 |
+
sns.pairplot(df)
|
77 |
+
|
78 |
+
prof = ProfileReport(df)
|
79 |
+
prof.to_file(output_file='output.html')
|
80 |
+
|
81 |
+
from IPython.core.display import display, HTML
|
82 |
+
|
83 |
+
with open('/content/output.html', 'r') as file:
|
84 |
+
html_content = file.read()
|
85 |
+
|
86 |
+
display(HTML(html_content))
|
87 |
+
|