File size: 5,003 Bytes
68cee86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
# coding=utf-8
# Copyright 2021 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Common Language Dataset"""


import glob
import os

import datasets


_DATA_URL = "CommonLanguage.tar.gz"

_CITATION = """\
@dataset{ganesh_sinisetty_2021_5036977,
  author       = {Ganesh Sinisetty and
                  Pavlo Ruban and
                  Oleksandr Dymov and
                  Mirco Ravanelli},
  title        = {CommonLanguage},
  month        = jun,
  year         = 2021,
  publisher    = {Zenodo},
  version      = {0.1},
  doi          = {10.5281/zenodo.5036977},
  url          = {https://doi.org/10.5281/zenodo.5036977}
}
"""

_DESCRIPTION = """\
This dataset is composed of speech recordings from languages that were carefully selected from the CommonVoice database.
The total duration of audio recordings is 45.1 hours (i.e., 1 hour of material for each language).
The dataset has been extracted from CommonVoice to train language-id systems.
"""

_HOMEPAGE = "https://zenodo.org/record/5036977"

_LICENSE = "https://creativecommons.org/licenses/by/4.0/legalcode"

_LANGUAGES = [
    "Arabic",
    "Basque",
    "Breton",
    "Catalan",
    "Chinese_China",
    "Chinese_Hongkong",
    "Chinese_Taiwan",
    "Chuvash",
    "Czech",
    "Dhivehi",
    "Dutch",
    "English",
    "Esperanto",
    "Estonian",
    "French",
    "Frisian",
    "Georgian",
    "German",
    "Greek",
    "Hakha_Chin",
    "Indonesian",
    "Interlingua",
    "Italian",
    "Japanese",
    "Kabyle",
    "Kinyarwanda",
    "Kyrgyz",
    "Latvian",
    "Maltese",
    "Mangolian",
    "Persian",
    "Polish",
    "Portuguese",
    "Romanian",
    "Romansh_Sursilvan",
    "Russian",
    "Sakha",
    "Slovenian",
    "Spanish",
    "Swedish",
    "Tamil",
    "Tatar",
    "Turkish",
    "Ukranian",
    "Welsh",
]


class CommonLanguage(datasets.GeneratorBasedBuilder):
    VERSION = datasets.Version("0.1.0")

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(name="full", version=VERSION, description="The entire Common Language dataset"),
    ]

    def _info(self):
        features = datasets.Features(
            {
                "client_id": datasets.Value("string"),
                "path": datasets.Value("string"),
                "sentence": datasets.Value("string"),
                "age": datasets.Value("string"),
                "gender": datasets.Value("string"),
                "language": datasets.ClassLabel(names=_LANGUAGES),
            }
        )

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            supervised_keys=None,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""

        dl_path = dl_manager.download_and_extract(_DATA_URL)
        archive_path = os.path.join(dl_path, "common_voice_kpd/")

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={"archive_path": archive_path, "split": "train"},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={"archive_path": archive_path, "split": "dev"},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={"archive_path": archive_path, "split": "test"},
            ),
        ]

    def _generate_examples(self, archive_path, split):
        """Yields examples."""

        csv_path_glob = os.path.join(archive_path, "**/", f"{split}.csv")

        key = 0
        for csv_path in sorted(glob.glob(csv_path_glob)):
            with open(csv_path, encoding="utf-16") as fin:
                next(fin)  # skip the header
                for line in fin:
                    client_id, wav_name, sentence, age, gender = line.strip().split("\t")[1:]
                    language = csv_path.split("/")[-2]
                    path = os.path.join(os.path.splitext(csv_path)[0], client_id, wav_name)

                    yield key, {
                        "client_id": client_id,
                        "path": path,
                        "sentence": sentence,
                        "age": age,
                        "gender": gender,
                        "language": language,
                    }
                    key += 1