speech-test
commited on
Commit
·
350d601
1
Parent(s):
0b620a8
Upload KS, IC, SI, ER
Browse files- .gitattributes +1 -0
- .gitignore +3 -0
- er.json +3 -0
- ic.json +3 -0
- ks.json +3 -0
- si.json +3 -0
- superb_dummy.py +249 -0
.gitattributes
CHANGED
@@ -14,3 +14,4 @@
|
|
14 |
*.pb filter=lfs diff=lfs merge=lfs -text
|
15 |
*.pt filter=lfs diff=lfs merge=lfs -text
|
16 |
*.pth filter=lfs diff=lfs merge=lfs -text
|
|
|
|
14 |
*.pb filter=lfs diff=lfs merge=lfs -text
|
15 |
*.pt filter=lfs diff=lfs merge=lfs -text
|
16 |
*.pth filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.json filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
.idea
|
2 |
+
.vscode
|
3 |
+
*.lock
|
er.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:198b0e002b23e243db2081dd531d0534a9c9abb804d0c5a452f1b9b208df11f5
|
3 |
+
size 6110558
|
ic.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f18d8b28e1dd18f272e18678b79c61ca4e07f54eba7cbce0926e1e8f360f297e
|
3 |
+
size 3451838
|
ks.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b73f8945241f056c5f0b58895de2da672716c512551150428d3db0a334bbdc53
|
3 |
+
size 2754033
|
si.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:864caab59d624605513916e31dc1db23695355be773b6548598f9cad77a36126
|
3 |
+
size 12841264
|
superb_dummy.py
ADDED
@@ -0,0 +1,249 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""SUPERB: Speech processing Universal PERformance Benchmark."""
|
18 |
+
|
19 |
+
|
20 |
+
import base64
|
21 |
+
import json
|
22 |
+
import textwrap
|
23 |
+
|
24 |
+
import datasets
|
25 |
+
import numpy as np
|
26 |
+
|
27 |
+
_CITATION = """\
|
28 |
+
@article{DBLP:journals/corr/abs-2105-01051,
|
29 |
+
author = {Shu{-}Wen Yang and
|
30 |
+
Po{-}Han Chi and
|
31 |
+
Yung{-}Sung Chuang and
|
32 |
+
Cheng{-}I Jeff Lai and
|
33 |
+
Kushal Lakhotia and
|
34 |
+
Yist Y. Lin and
|
35 |
+
Andy T. Liu and
|
36 |
+
Jiatong Shi and
|
37 |
+
Xuankai Chang and
|
38 |
+
Guan{-}Ting Lin and
|
39 |
+
Tzu{-}Hsien Huang and
|
40 |
+
Wei{-}Cheng Tseng and
|
41 |
+
Ko{-}tik Lee and
|
42 |
+
Da{-}Rong Liu and
|
43 |
+
Zili Huang and
|
44 |
+
Shuyan Dong and
|
45 |
+
Shang{-}Wen Li and
|
46 |
+
Shinji Watanabe and
|
47 |
+
Abdelrahman Mohamed and
|
48 |
+
Hung{-}yi Lee},
|
49 |
+
title = {{SUPERB:} Speech processing Universal PERformance Benchmark},
|
50 |
+
journal = {CoRR},
|
51 |
+
volume = {abs/2105.01051},
|
52 |
+
year = {2021},
|
53 |
+
url = {https://arxiv.org/abs/2105.01051},
|
54 |
+
archivePrefix = {arXiv},
|
55 |
+
eprint = {2105.01051},
|
56 |
+
timestamp = {Thu, 01 Jul 2021 13:30:22 +0200},
|
57 |
+
biburl = {https://dblp.org/rec/journals/corr/abs-2105-01051.bib},
|
58 |
+
bibsource = {dblp computer science bibliography, https://dblp.org}
|
59 |
+
}
|
60 |
+
"""
|
61 |
+
|
62 |
+
_DESCRIPTION = """\
|
63 |
+
Self-supervised learning (SSL) has proven vital for advancing research in
|
64 |
+
natural language processing (NLP) and computer vision (CV). The paradigm
|
65 |
+
pretrains a shared model on large volumes of unlabeled data and achieves
|
66 |
+
state-of-the-art (SOTA) for various tasks with minimal adaptation. However, the
|
67 |
+
speech processing community lacks a similar setup to systematically explore the
|
68 |
+
paradigm. To bridge this gap, we introduce Speech processing Universal
|
69 |
+
PERformance Benchmark (SUPERB). SUPERB is a leaderboard to benchmark the
|
70 |
+
performance of a shared model across a wide range of speech processing tasks
|
71 |
+
with minimal architecture changes and labeled data. Among multiple usages of the
|
72 |
+
shared model, we especially focus on extracting the representation learned from
|
73 |
+
SSL due to its preferable re-usability. We present a simple framework to solve
|
74 |
+
SUPERB tasks by learning task-specialized lightweight prediction heads on top of
|
75 |
+
the frozen shared model. Our results demonstrate that the framework is promising
|
76 |
+
as SSL representations show competitive generalizability and accessibility
|
77 |
+
across SUPERB tasks. We release SUPERB as a challenge with a leaderboard and a
|
78 |
+
benchmark toolkit to fuel the research in representation learning and general
|
79 |
+
speech processing.
|
80 |
+
"""
|
81 |
+
|
82 |
+
|
83 |
+
class SuperbConfig(datasets.BuilderConfig):
|
84 |
+
"""BuilderConfig for Superb."""
|
85 |
+
|
86 |
+
def __init__(
|
87 |
+
self,
|
88 |
+
features,
|
89 |
+
url,
|
90 |
+
data_url=None,
|
91 |
+
supervised_keys=None,
|
92 |
+
task_templates=None,
|
93 |
+
**kwargs,
|
94 |
+
):
|
95 |
+
super().__init__(version=datasets.Version("1.9.0", ""), **kwargs)
|
96 |
+
self.features = features
|
97 |
+
self.data_url = data_url
|
98 |
+
self.url = url
|
99 |
+
self.supervised_keys = supervised_keys
|
100 |
+
self.task_templates = task_templates
|
101 |
+
|
102 |
+
|
103 |
+
class Superb(datasets.GeneratorBasedBuilder):
|
104 |
+
"""Superb dataset."""
|
105 |
+
|
106 |
+
BUILDER_CONFIGS = [
|
107 |
+
SuperbConfig(
|
108 |
+
name="ks",
|
109 |
+
description=textwrap.dedent(
|
110 |
+
"""\
|
111 |
+
Keyword Spotting (KS) detects preregistered keywords by classifying utterances into a predefined set of
|
112 |
+
words. The task is usually performed on-device for the fast response time. Thus, accuracy, model size, and
|
113 |
+
inference time are all crucial. SUPERB uses the widely used [Speech Commands dataset v1.0] for the task.
|
114 |
+
The dataset consists of ten classes of keywords, a class for silence, and an unknown class to include the
|
115 |
+
false positive. The evaluation metric is accuracy (ACC)"""
|
116 |
+
),
|
117 |
+
features=datasets.Features(
|
118 |
+
{
|
119 |
+
"file": datasets.Value("string"),
|
120 |
+
"label": datasets.ClassLabel(
|
121 |
+
names=[
|
122 |
+
"yes",
|
123 |
+
"no",
|
124 |
+
"up",
|
125 |
+
"down",
|
126 |
+
"left",
|
127 |
+
"right",
|
128 |
+
"on",
|
129 |
+
"off",
|
130 |
+
"stop",
|
131 |
+
"go",
|
132 |
+
"_silence_",
|
133 |
+
"_unknown_",
|
134 |
+
]
|
135 |
+
),
|
136 |
+
"speech": datasets.Sequence(datasets.Value("float32")),
|
137 |
+
}
|
138 |
+
),
|
139 |
+
url="https://www.tensorflow.org/datasets/catalog/speech_commands",
|
140 |
+
data_url="ks.json",
|
141 |
+
),
|
142 |
+
SuperbConfig(
|
143 |
+
name="ic",
|
144 |
+
description=textwrap.dedent(
|
145 |
+
"""\
|
146 |
+
Intent Classification (IC) classifies utterances into predefined classes to determine the intent of
|
147 |
+
speakers. SUPERB uses the Fluent Speech Commands dataset, where each utterance is tagged with three intent
|
148 |
+
labels: action, object, and location. The evaluation metric is accuracy (ACC)."""
|
149 |
+
),
|
150 |
+
features=datasets.Features(
|
151 |
+
{
|
152 |
+
"file": datasets.Value("string"),
|
153 |
+
"speaker_id": datasets.Value("string"),
|
154 |
+
"text": datasets.Value("string"),
|
155 |
+
"action": datasets.ClassLabel(
|
156 |
+
names=["activate", "bring", "change language", "deactivate", "decrease", "increase"]
|
157 |
+
),
|
158 |
+
"object": datasets.ClassLabel(
|
159 |
+
names=[
|
160 |
+
"Chinese",
|
161 |
+
"English",
|
162 |
+
"German",
|
163 |
+
"Korean",
|
164 |
+
"heat",
|
165 |
+
"juice",
|
166 |
+
"lamp",
|
167 |
+
"lights",
|
168 |
+
"music",
|
169 |
+
"newspaper",
|
170 |
+
"none",
|
171 |
+
"shoes",
|
172 |
+
"socks",
|
173 |
+
"volume",
|
174 |
+
]
|
175 |
+
),
|
176 |
+
"location": datasets.ClassLabel(names=["bedroom", "kitchen", "none", "washroom"]),
|
177 |
+
"speech": datasets.Sequence(datasets.Value("float32")),
|
178 |
+
}
|
179 |
+
),
|
180 |
+
url="https://fluent.ai/fluent-speech-commands-a-dataset-for-spoken-language-understanding-research/",
|
181 |
+
data_url="ic.json",
|
182 |
+
),
|
183 |
+
SuperbConfig(
|
184 |
+
name="si",
|
185 |
+
description=textwrap.dedent(
|
186 |
+
"""\
|
187 |
+
Speaker Identification (SI) classifies each utterance for its speaker identity as a multi-class
|
188 |
+
classification, where speakers are in the same predefined set for both training and testing. The widely
|
189 |
+
used VoxCeleb1 dataset is adopted, and the evaluation metric is accuracy (ACC)."""
|
190 |
+
),
|
191 |
+
features=datasets.Features(
|
192 |
+
{
|
193 |
+
"file": datasets.Value("string"),
|
194 |
+
"label": datasets.ClassLabel(names=[f"id{i+10001}" for i in range(1251)]),
|
195 |
+
"speech": datasets.Sequence(datasets.Value("float32")),
|
196 |
+
}
|
197 |
+
),
|
198 |
+
url="https://www.robots.ox.ac.uk/~vgg/data/voxceleb/vox1.html",
|
199 |
+
data_url="si.json",
|
200 |
+
),
|
201 |
+
SuperbConfig(
|
202 |
+
name="er",
|
203 |
+
description=textwrap.dedent(
|
204 |
+
"""\
|
205 |
+
Emotion Recognition (ER) predicts an emotion class for each utterance. The most widely used ER dataset
|
206 |
+
IEMOCAP is adopted, and we follow the conventional evaluation protocol: we drop the unbalance emotion
|
207 |
+
classes to leave the final four classes with a similar amount of data points and cross-validates on five
|
208 |
+
folds of the standard splits. The evaluation metric is accuracy (ACC)."""
|
209 |
+
),
|
210 |
+
features=datasets.Features(
|
211 |
+
{
|
212 |
+
"file": datasets.Value("string"),
|
213 |
+
"label": datasets.ClassLabel(names=["neu", "hap", "ang", "sad"]),
|
214 |
+
"speech": datasets.Sequence(datasets.Value("float32")),
|
215 |
+
}
|
216 |
+
),
|
217 |
+
url="https://sail.usc.edu/iemocap/",
|
218 |
+
data_url="er.json",
|
219 |
+
),
|
220 |
+
]
|
221 |
+
|
222 |
+
def _info(self):
|
223 |
+
return datasets.DatasetInfo(
|
224 |
+
description=_DESCRIPTION,
|
225 |
+
features=self.config.features,
|
226 |
+
supervised_keys=self.config.supervised_keys,
|
227 |
+
homepage=self.config.url,
|
228 |
+
citation=_CITATION,
|
229 |
+
task_templates=self.config.task_templates,
|
230 |
+
)
|
231 |
+
|
232 |
+
def _split_generators(self, dl_manager):
|
233 |
+
data_path = dl_manager.download_and_extract(self.config.data_url)
|
234 |
+
|
235 |
+
return [
|
236 |
+
datasets.SplitGenerator(
|
237 |
+
name=datasets.Split.VALIDATION,
|
238 |
+
gen_kwargs={"data_path": data_path},
|
239 |
+
)
|
240 |
+
]
|
241 |
+
|
242 |
+
def _generate_examples(self, data_path):
|
243 |
+
"""Generate examples."""
|
244 |
+
with open(data_path, "r", encoding="utf-8") as f:
|
245 |
+
for key, line in enumerate(f):
|
246 |
+
example = json.loads(line)
|
247 |
+
example["speech"] = np.frombuffer(base64.b64decode(example["speech"]), dtype=np.float32)
|
248 |
+
|
249 |
+
yield key, example
|