anvilarth commited on
Commit
e6482b1
·
verified ·
1 Parent(s): 454054f

Upload 2 files

Browse files
Files changed (2) hide show
  1. categories.py +1205 -0
  2. lvis.py +178 -0
categories.py ADDED
@@ -0,0 +1,1205 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ categories = [
2
+ "aerosol_can",
3
+ "air_conditioner",
4
+ "airplane",
5
+ "alarm_clock",
6
+ "alcohol",
7
+ "alligator",
8
+ "almond",
9
+ "ambulance",
10
+ "amplifier",
11
+ "anklet",
12
+ "antenna",
13
+ "apple",
14
+ "applesauce",
15
+ "apricot",
16
+ "apron",
17
+ "aquarium",
18
+ "arctic_(type_of_shoe)",
19
+ "armband",
20
+ "armchair",
21
+ "armoire",
22
+ "armor",
23
+ "artichoke",
24
+ "trash_can",
25
+ "ashtray",
26
+ "asparagus",
27
+ "atomizer",
28
+ "avocado",
29
+ "award",
30
+ "awning",
31
+ "ax",
32
+ "baboon",
33
+ "baby_buggy",
34
+ "basketball_backboard",
35
+ "backpack",
36
+ "handbag",
37
+ "suitcase",
38
+ "bagel",
39
+ "bagpipe",
40
+ "baguet",
41
+ "bait",
42
+ "ball",
43
+ "ballet_skirt",
44
+ "balloon",
45
+ "bamboo",
46
+ "banana",
47
+ "Band_Aid",
48
+ "bandage",
49
+ "bandanna",
50
+ "banjo",
51
+ "banner",
52
+ "barbell",
53
+ "barge",
54
+ "barrel",
55
+ "barrette",
56
+ "barrow",
57
+ "baseball_base",
58
+ "baseball",
59
+ "baseball_bat",
60
+ "baseball_cap",
61
+ "baseball_glove",
62
+ "basket",
63
+ "basketball",
64
+ "bass_horn",
65
+ "bat_(animal)",
66
+ "bath_mat",
67
+ "bath_towel",
68
+ "bathrobe",
69
+ "bathtub",
70
+ "batter_(food)",
71
+ "battery",
72
+ "beachball",
73
+ "bead",
74
+ "bean_curd",
75
+ "beanbag",
76
+ "beanie",
77
+ "bear",
78
+ "bed",
79
+ "bedpan",
80
+ "bedspread",
81
+ "cow",
82
+ "beef_(food)",
83
+ "beeper",
84
+ "beer_bottle",
85
+ "beer_can",
86
+ "beetle",
87
+ "bell",
88
+ "bell_pepper",
89
+ "belt",
90
+ "belt_buckle",
91
+ "bench",
92
+ "beret",
93
+ "bib",
94
+ "Bible",
95
+ "bicycle",
96
+ "visor",
97
+ "billboard",
98
+ "binder",
99
+ "binoculars",
100
+ "bird",
101
+ "birdfeeder",
102
+ "birdbath",
103
+ "birdcage",
104
+ "birdhouse",
105
+ "birthday_cake",
106
+ "birthday_card",
107
+ "pirate_flag",
108
+ "black_sheep",
109
+ "blackberry",
110
+ "blackboard",
111
+ "blanket",
112
+ "blazer",
113
+ "blender",
114
+ "blimp",
115
+ "blinker",
116
+ "blouse",
117
+ "blueberry",
118
+ "gameboard",
119
+ "boat",
120
+ "bob",
121
+ "bobbin",
122
+ "bobby_pin",
123
+ "boiled_egg",
124
+ "bolo_tie",
125
+ "deadbolt",
126
+ "bolt",
127
+ "bonnet",
128
+ "book",
129
+ "bookcase",
130
+ "booklet",
131
+ "bookmark",
132
+ "boom_microphone",
133
+ "boot",
134
+ "bottle",
135
+ "bottle_opener",
136
+ "bouquet",
137
+ "bow_(weapon)",
138
+ "bow_(decorative_ribbons)",
139
+ "bow-tie",
140
+ "bowl",
141
+ "pipe_bowl",
142
+ "bowler_hat",
143
+ "bowling_ball",
144
+ "box",
145
+ "boxing_glove",
146
+ "suspenders",
147
+ "bracelet",
148
+ "brass_plaque",
149
+ "brassiere",
150
+ "bread-bin",
151
+ "bread",
152
+ "breechcloth",
153
+ "bridal_gown",
154
+ "briefcase",
155
+ "broccoli",
156
+ "broach",
157
+ "broom",
158
+ "brownie",
159
+ "brussels_sprouts",
160
+ "bubble_gum",
161
+ "bucket",
162
+ "horse_buggy",
163
+ "bull",
164
+ "bulldog",
165
+ "bulldozer",
166
+ "bullet_train",
167
+ "bulletin_board",
168
+ "bulletproof_vest",
169
+ "bullhorn",
170
+ "bun",
171
+ "bunk_bed",
172
+ "buoy",
173
+ "burrito",
174
+ "bus_(vehicle)",
175
+ "business_card",
176
+ "butter",
177
+ "butterfly",
178
+ "button",
179
+ "cab_(taxi)",
180
+ "cabana",
181
+ "cabin_car",
182
+ "cabinet",
183
+ "locker",
184
+ "cake",
185
+ "calculator",
186
+ "calendar",
187
+ "calf",
188
+ "camcorder",
189
+ "camel",
190
+ "camera",
191
+ "camera_lens",
192
+ "camper_(vehicle)",
193
+ "can",
194
+ "can_opener",
195
+ "candle",
196
+ "candle_holder",
197
+ "candy_bar",
198
+ "candy_cane",
199
+ "walking_cane",
200
+ "canister",
201
+ "canoe",
202
+ "cantaloup",
203
+ "canteen",
204
+ "cap_(headwear)",
205
+ "bottle_cap",
206
+ "cape",
207
+ "cappuccino",
208
+ "car_(automobile)",
209
+ "railcar_(part_of_a_train)",
210
+ "elevator_car",
211
+ "car_battery",
212
+ "identity_card",
213
+ "card",
214
+ "cardigan",
215
+ "cargo_ship",
216
+ "carnation",
217
+ "horse_carriage",
218
+ "carrot",
219
+ "tote_bag",
220
+ "cart",
221
+ "carton",
222
+ "cash_register",
223
+ "casserole",
224
+ "cassette",
225
+ "cast",
226
+ "cat",
227
+ "cauliflower",
228
+ "cayenne_(spice)",
229
+ "CD_player",
230
+ "celery",
231
+ "cellular_telephone",
232
+ "chain_mail",
233
+ "chair",
234
+ "chaise_longue",
235
+ "chalice",
236
+ "chandelier",
237
+ "chap",
238
+ "checkbook",
239
+ "checkerboard",
240
+ "cherry",
241
+ "chessboard",
242
+ "chicken_(animal)",
243
+ "chickpea",
244
+ "chili_(vegetable)",
245
+ "chime",
246
+ "chinaware",
247
+ "crisp_(potato_chip)",
248
+ "poker_chip",
249
+ "chocolate_bar",
250
+ "chocolate_cake",
251
+ "chocolate_milk",
252
+ "chocolate_mousse",
253
+ "choker",
254
+ "chopping_board",
255
+ "chopstick",
256
+ "Christmas_tree",
257
+ "slide",
258
+ "cider",
259
+ "cigar_box",
260
+ "cigarette",
261
+ "cigarette_case",
262
+ "cistern",
263
+ "clarinet",
264
+ "clasp",
265
+ "cleansing_agent",
266
+ "cleat_(for_securing_rope)",
267
+ "clementine",
268
+ "clip",
269
+ "clipboard",
270
+ "clippers_(for_plants)",
271
+ "cloak",
272
+ "clock",
273
+ "clock_tower",
274
+ "clothes_hamper",
275
+ "clothespin",
276
+ "clutch_bag",
277
+ "coaster",
278
+ "coat",
279
+ "coat_hanger",
280
+ "coatrack",
281
+ "cock",
282
+ "cockroach",
283
+ "cocoa_(beverage)",
284
+ "coconut",
285
+ "coffee_maker",
286
+ "coffee_table",
287
+ "coffeepot",
288
+ "coil",
289
+ "coin",
290
+ "colander",
291
+ "coleslaw",
292
+ "coloring_material",
293
+ "combination_lock",
294
+ "pacifier",
295
+ "comic_book",
296
+ "compass",
297
+ "computer_keyboard",
298
+ "condiment",
299
+ "cone",
300
+ "control",
301
+ "convertible_(automobile)",
302
+ "sofa_bed",
303
+ "cooker",
304
+ "cookie",
305
+ "cooking_utensil",
306
+ "cooler_(for_food)",
307
+ "cork_(bottle_plug)",
308
+ "corkboard",
309
+ "corkscrew",
310
+ "edible_corn",
311
+ "cornbread",
312
+ "cornet",
313
+ "cornice",
314
+ "cornmeal",
315
+ "corset",
316
+ "costume",
317
+ "cougar",
318
+ "coverall",
319
+ "cowbell",
320
+ "cowboy_hat",
321
+ "crab_(animal)",
322
+ "crabmeat",
323
+ "cracker",
324
+ "crape",
325
+ "crate",
326
+ "crayon",
327
+ "cream_pitcher",
328
+ "crescent_roll",
329
+ "crib",
330
+ "crock_pot",
331
+ "crossbar",
332
+ "crouton",
333
+ "crow",
334
+ "crowbar",
335
+ "crown",
336
+ "crucifix",
337
+ "cruise_ship",
338
+ "police_cruiser",
339
+ "crumb",
340
+ "crutch",
341
+ "cub_(animal)",
342
+ "cube",
343
+ "cucumber",
344
+ "cufflink",
345
+ "cup",
346
+ "trophy_cup",
347
+ "cupboard",
348
+ "cupcake",
349
+ "hair_curler",
350
+ "curling_iron",
351
+ "curtain",
352
+ "cushion",
353
+ "cylinder",
354
+ "cymbal",
355
+ "dagger",
356
+ "dalmatian",
357
+ "dartboard",
358
+ "date_(fruit)",
359
+ "deck_chair",
360
+ "deer",
361
+ "dental_floss",
362
+ "desk",
363
+ "detergent",
364
+ "diaper",
365
+ "diary",
366
+ "die",
367
+ "dinghy",
368
+ "dining_table",
369
+ "tux",
370
+ "dish",
371
+ "dish_antenna",
372
+ "dishrag",
373
+ "dishtowel",
374
+ "dishwasher",
375
+ "dishwasher_detergent",
376
+ "dispenser",
377
+ "diving_board",
378
+ "Dixie_cup",
379
+ "dog",
380
+ "dog_collar",
381
+ "doll",
382
+ "dollar",
383
+ "dollhouse",
384
+ "dolphin",
385
+ "domestic_ass",
386
+ "doorknob",
387
+ "doormat",
388
+ "doughnut",
389
+ "dove",
390
+ "dragonfly",
391
+ "drawer",
392
+ "underdrawers",
393
+ "dress",
394
+ "dress_hat",
395
+ "dress_suit",
396
+ "dresser",
397
+ "drill",
398
+ "drone",
399
+ "dropper",
400
+ "drum_(musical_instrument)",
401
+ "drumstick",
402
+ "duck",
403
+ "duckling",
404
+ "duct_tape",
405
+ "duffel_bag",
406
+ "dumbbell",
407
+ "dumpster",
408
+ "dustpan",
409
+ "eagle",
410
+ "earphone",
411
+ "earplug",
412
+ "earring",
413
+ "easel",
414
+ "eclair",
415
+ "eel",
416
+ "egg",
417
+ "egg_roll",
418
+ "egg_yolk",
419
+ "eggbeater",
420
+ "eggplant",
421
+ "electric_chair",
422
+ "refrigerator",
423
+ "elephant",
424
+ "elk",
425
+ "envelope",
426
+ "eraser",
427
+ "escargot",
428
+ "eyepatch",
429
+ "falcon",
430
+ "fan",
431
+ "faucet",
432
+ "fedora",
433
+ "ferret",
434
+ "Ferris_wheel",
435
+ "ferry",
436
+ "fig_(fruit)",
437
+ "fighter_jet",
438
+ "figurine",
439
+ "file_cabinet",
440
+ "file_(tool)",
441
+ "fire_alarm",
442
+ "fire_engine",
443
+ "fire_extinguisher",
444
+ "fire_hose",
445
+ "fireplace",
446
+ "fireplug",
447
+ "first-aid_kit",
448
+ "fish",
449
+ "fish_(food)",
450
+ "fishbowl",
451
+ "fishing_rod",
452
+ "flag",
453
+ "flagpole",
454
+ "flamingo",
455
+ "flannel",
456
+ "flap",
457
+ "flash",
458
+ "flashlight",
459
+ "fleece",
460
+ "flip-flop_(sandal)",
461
+ "flipper_(footwear)",
462
+ "flower_arrangement",
463
+ "flute_glass",
464
+ "foal",
465
+ "folding_chair",
466
+ "food_processor",
467
+ "football_(American)",
468
+ "football_helmet",
469
+ "footstool",
470
+ "fork",
471
+ "forklift",
472
+ "freight_car",
473
+ "French_toast",
474
+ "freshener",
475
+ "frisbee",
476
+ "frog",
477
+ "fruit_juice",
478
+ "frying_pan",
479
+ "fudge",
480
+ "funnel",
481
+ "futon",
482
+ "gag",
483
+ "garbage",
484
+ "garbage_truck",
485
+ "garden_hose",
486
+ "gargle",
487
+ "gargoyle",
488
+ "garlic",
489
+ "gasmask",
490
+ "gazelle",
491
+ "gelatin",
492
+ "gemstone",
493
+ "generator",
494
+ "giant_panda",
495
+ "gift_wrap",
496
+ "ginger",
497
+ "giraffe",
498
+ "cincture",
499
+ "glass_(drink_container)",
500
+ "globe",
501
+ "glove",
502
+ "goat",
503
+ "goggles",
504
+ "goldfish",
505
+ "golf_club",
506
+ "golfcart",
507
+ "gondola_(boat)",
508
+ "goose",
509
+ "gorilla",
510
+ "gourd",
511
+ "grape",
512
+ "grater",
513
+ "gravestone",
514
+ "gravy_boat",
515
+ "green_bean",
516
+ "green_onion",
517
+ "griddle",
518
+ "grill",
519
+ "grits",
520
+ "grizzly",
521
+ "grocery_bag",
522
+ "guitar",
523
+ "gull",
524
+ "gun",
525
+ "hairbrush",
526
+ "hairnet",
527
+ "hairpin",
528
+ "halter_top",
529
+ "ham",
530
+ "hamburger",
531
+ "hammer",
532
+ "hammock",
533
+ "hamper",
534
+ "hamster",
535
+ "hair_dryer",
536
+ "hand_glass",
537
+ "hand_towel",
538
+ "handcart",
539
+ "handcuff",
540
+ "handkerchief",
541
+ "handle",
542
+ "handsaw",
543
+ "hardback_book",
544
+ "harmonium",
545
+ "hat",
546
+ "hatbox",
547
+ "veil",
548
+ "headband",
549
+ "headboard",
550
+ "headlight",
551
+ "headscarf",
552
+ "headset",
553
+ "headstall_(for_horses)",
554
+ "heart",
555
+ "heater",
556
+ "helicopter",
557
+ "helmet",
558
+ "heron",
559
+ "highchair",
560
+ "hinge",
561
+ "hippopotamus",
562
+ "hockey_stick",
563
+ "hog",
564
+ "home_plate_(baseball)",
565
+ "honey",
566
+ "fume_hood",
567
+ "hook",
568
+ "hookah",
569
+ "hornet",
570
+ "horse",
571
+ "hose",
572
+ "hot-air_balloon",
573
+ "hotplate",
574
+ "hot_sauce",
575
+ "hourglass",
576
+ "houseboat",
577
+ "hummingbird",
578
+ "hummus",
579
+ "polar_bear",
580
+ "icecream",
581
+ "popsicle",
582
+ "ice_maker",
583
+ "ice_pack",
584
+ "ice_skate",
585
+ "igniter",
586
+ "inhaler",
587
+ "iPod",
588
+ "iron_(for_clothing)",
589
+ "ironing_board",
590
+ "jacket",
591
+ "jam",
592
+ "jar",
593
+ "jean",
594
+ "jeep",
595
+ "jelly_bean",
596
+ "jersey",
597
+ "jet_plane",
598
+ "jewel",
599
+ "jewelry",
600
+ "joystick",
601
+ "jumpsuit",
602
+ "kayak",
603
+ "keg",
604
+ "kennel",
605
+ "kettle",
606
+ "key",
607
+ "keycard",
608
+ "kilt",
609
+ "kimono",
610
+ "kitchen_sink",
611
+ "kitchen_table",
612
+ "kite",
613
+ "kitten",
614
+ "kiwi_fruit",
615
+ "knee_pad",
616
+ "knife",
617
+ "knitting_needle",
618
+ "knob",
619
+ "knocker_(on_a_door)",
620
+ "koala",
621
+ "lab_coat",
622
+ "ladder",
623
+ "ladle",
624
+ "ladybug",
625
+ "lamb_(animal)",
626
+ "lamb-chop",
627
+ "lamp",
628
+ "lamppost",
629
+ "lampshade",
630
+ "lantern",
631
+ "lanyard",
632
+ "laptop_computer",
633
+ "lasagna",
634
+ "latch",
635
+ "lawn_mower",
636
+ "leather",
637
+ "legging_(clothing)",
638
+ "Lego",
639
+ "legume",
640
+ "lemon",
641
+ "lemonade",
642
+ "lettuce",
643
+ "license_plate",
644
+ "life_buoy",
645
+ "life_jacket",
646
+ "lightbulb",
647
+ "lightning_rod",
648
+ "lime",
649
+ "limousine",
650
+ "lion",
651
+ "lip_balm",
652
+ "liquor",
653
+ "lizard",
654
+ "log",
655
+ "lollipop",
656
+ "speaker_(stero_equipment)",
657
+ "loveseat",
658
+ "machine_gun",
659
+ "magazine",
660
+ "magnet",
661
+ "mail_slot",
662
+ "mailbox_(at_home)",
663
+ "mallard",
664
+ "mallet",
665
+ "mammoth",
666
+ "manatee",
667
+ "mandarin_orange",
668
+ "manger",
669
+ "manhole",
670
+ "map",
671
+ "marker",
672
+ "martini",
673
+ "mascot",
674
+ "mashed_potato",
675
+ "masher",
676
+ "mask",
677
+ "mast",
678
+ "mat_(gym_equipment)",
679
+ "matchbox",
680
+ "mattress",
681
+ "measuring_cup",
682
+ "measuring_stick",
683
+ "meatball",
684
+ "medicine",
685
+ "melon",
686
+ "microphone",
687
+ "microscope",
688
+ "microwave_oven",
689
+ "milestone",
690
+ "milk",
691
+ "milk_can",
692
+ "milkshake",
693
+ "minivan",
694
+ "mint_candy",
695
+ "mirror",
696
+ "mitten",
697
+ "mixer_(kitchen_tool)",
698
+ "money",
699
+ "monitor_(computer_equipment) computer_monitor",
700
+ "monkey",
701
+ "motor",
702
+ "motor_scooter",
703
+ "motor_vehicle",
704
+ "motorcycle",
705
+ "mound_(baseball)",
706
+ "mouse_(computer_equipment)",
707
+ "mousepad",
708
+ "muffin",
709
+ "mug",
710
+ "mushroom",
711
+ "music_stool",
712
+ "musical_instrument",
713
+ "nailfile",
714
+ "napkin",
715
+ "neckerchief",
716
+ "necklace",
717
+ "necktie",
718
+ "needle",
719
+ "nest",
720
+ "newspaper",
721
+ "newsstand",
722
+ "nightshirt",
723
+ "nosebag_(for_animals)",
724
+ "noseband_(for_animals)",
725
+ "notebook",
726
+ "notepad",
727
+ "nut",
728
+ "nutcracker",
729
+ "oar",
730
+ "octopus_(food)",
731
+ "octopus_(animal)",
732
+ "oil_lamp",
733
+ "olive_oil",
734
+ "omelet",
735
+ "onion",
736
+ "orange_(fruit)",
737
+ "orange_juice",
738
+ "ostrich",
739
+ "ottoman",
740
+ "oven",
741
+ "overalls_(clothing)",
742
+ "owl",
743
+ "packet",
744
+ "inkpad",
745
+ "pad",
746
+ "paddle",
747
+ "padlock",
748
+ "paintbrush",
749
+ "painting",
750
+ "pajamas",
751
+ "palette",
752
+ "pan_(for_cooking)",
753
+ "pan_(metal_container)",
754
+ "pancake",
755
+ "pantyhose",
756
+ "papaya",
757
+ "paper_plate",
758
+ "paper_towel",
759
+ "paperback_book",
760
+ "paperweight",
761
+ "parachute",
762
+ "parakeet",
763
+ "parasail_(sports)",
764
+ "parasol",
765
+ "parchment",
766
+ "parka",
767
+ "parking_meter",
768
+ "parrot",
769
+ "passenger_car_(part_of_a_train)",
770
+ "passenger_ship",
771
+ "passport",
772
+ "pastry",
773
+ "patty_(food)",
774
+ "pea_(food)",
775
+ "peach",
776
+ "peanut_butter",
777
+ "pear",
778
+ "peeler_(tool_for_fruit_and_vegetables)",
779
+ "wooden_leg",
780
+ "pegboard",
781
+ "pelican",
782
+ "pen",
783
+ "pencil",
784
+ "pencil_box",
785
+ "pencil_sharpener",
786
+ "pendulum",
787
+ "penguin",
788
+ "pennant",
789
+ "penny_(coin)",
790
+ "pepper",
791
+ "pepper_mill",
792
+ "perfume",
793
+ "persimmon",
794
+ "person",
795
+ "pet",
796
+ "pew_(church_bench)",
797
+ "phonebook",
798
+ "phonograph_record",
799
+ "piano",
800
+ "pickle",
801
+ "pickup_truck",
802
+ "pie",
803
+ "pigeon",
804
+ "piggy_bank",
805
+ "pillow",
806
+ "pin_(non_jewelry)",
807
+ "pineapple",
808
+ "pinecone",
809
+ "ping-pong_ball",
810
+ "pinwheel",
811
+ "tobacco_pipe",
812
+ "pipe",
813
+ "pistol",
814
+ "pita_(bread)",
815
+ "pitcher_(vessel_for_liquid)",
816
+ "pitchfork",
817
+ "pizza",
818
+ "place_mat",
819
+ "plate",
820
+ "platter",
821
+ "playpen",
822
+ "pliers",
823
+ "plow_(farm_equipment)",
824
+ "plume",
825
+ "pocket_watch",
826
+ "pocketknife",
827
+ "poker_(fire_stirring_tool)",
828
+ "pole",
829
+ "polo_shirt",
830
+ "poncho",
831
+ "pony",
832
+ "pool_table",
833
+ "pop_(soda)",
834
+ "postbox_(public)",
835
+ "postcard",
836
+ "poster",
837
+ "pot",
838
+ "flowerpot",
839
+ "potato",
840
+ "potholder",
841
+ "pottery",
842
+ "pouch",
843
+ "power_shovel",
844
+ "prawn",
845
+ "pretzel",
846
+ "printer",
847
+ "projectile_(weapon)",
848
+ "projector",
849
+ "propeller",
850
+ "prune",
851
+ "pudding",
852
+ "puffer_(fish)",
853
+ "puffin",
854
+ "pug-dog",
855
+ "pumpkin",
856
+ "puncher",
857
+ "puppet",
858
+ "puppy",
859
+ "quesadilla",
860
+ "quiche",
861
+ "quilt",
862
+ "rabbit",
863
+ "race_car",
864
+ "racket",
865
+ "radar",
866
+ "radiator",
867
+ "radio_receiver",
868
+ "radish",
869
+ "raft",
870
+ "rag_doll",
871
+ "raincoat",
872
+ "ram_(animal)",
873
+ "raspberry",
874
+ "rat",
875
+ "razorblade",
876
+ "reamer_(juicer)",
877
+ "rearview_mirror",
878
+ "receipt",
879
+ "recliner",
880
+ "record_player",
881
+ "reflector",
882
+ "remote_control",
883
+ "rhinoceros",
884
+ "rib_(food)",
885
+ "rifle",
886
+ "ring",
887
+ "river_boat",
888
+ "road_map",
889
+ "robe",
890
+ "rocking_chair",
891
+ "rodent",
892
+ "roller_skate",
893
+ "Rollerblade",
894
+ "rolling_pin",
895
+ "root_beer",
896
+ "router_(computer_equipment)",
897
+ "rubber_band",
898
+ "runner_(carpet)",
899
+ "plastic_bag",
900
+ "saddle_(on_an_animal)",
901
+ "saddle_blanket",
902
+ "saddlebag",
903
+ "safety_pin",
904
+ "sail",
905
+ "salad",
906
+ "salad_plate",
907
+ "salami",
908
+ "salmon_(fish)",
909
+ "salmon_(food)",
910
+ "salsa",
911
+ "saltshaker",
912
+ "sandal_(type_of_shoe)",
913
+ "sandwich",
914
+ "satchel",
915
+ "saucepan",
916
+ "saucer",
917
+ "sausage",
918
+ "sawhorse",
919
+ "saxophone",
920
+ "scale_(measuring_instrument)",
921
+ "scarecrow",
922
+ "scarf",
923
+ "school_bus",
924
+ "scissors",
925
+ "scoreboard",
926
+ "scraper",
927
+ "screwdriver",
928
+ "scrubbing_brush",
929
+ "sculpture",
930
+ "seabird",
931
+ "seahorse",
932
+ "seaplane",
933
+ "seashell",
934
+ "sewing_machine",
935
+ "shaker",
936
+ "shampoo",
937
+ "shark",
938
+ "sharpener",
939
+ "Sharpie",
940
+ "shaver_(electric)",
941
+ "shaving_cream",
942
+ "shawl",
943
+ "shears",
944
+ "sheep",
945
+ "shepherd_dog",
946
+ "sherbert",
947
+ "shield",
948
+ "shirt",
949
+ "shoe",
950
+ "shopping_bag",
951
+ "shopping_cart",
952
+ "short_pants",
953
+ "shot_glass",
954
+ "shoulder_bag",
955
+ "shovel",
956
+ "shower_head",
957
+ "shower_cap",
958
+ "shower_curtain",
959
+ "shredder_(for_paper)",
960
+ "signboard",
961
+ "silo",
962
+ "sink",
963
+ "skateboard",
964
+ "skewer",
965
+ "ski",
966
+ "ski_boot",
967
+ "ski_parka",
968
+ "ski_pole",
969
+ "skirt",
970
+ "skullcap",
971
+ "sled",
972
+ "sleeping_bag",
973
+ "sling_(bandage)",
974
+ "slipper_(footwear)",
975
+ "smoothie",
976
+ "snake",
977
+ "snowboard",
978
+ "snowman",
979
+ "snowmobile",
980
+ "soap",
981
+ "soccer_ball",
982
+ "sock",
983
+ "sofa",
984
+ "softball",
985
+ "solar_array",
986
+ "sombrero",
987
+ "soup",
988
+ "soup_bowl",
989
+ "soupspoon",
990
+ "sour_cream",
991
+ "soya_milk",
992
+ "space_shuttle",
993
+ "sparkler_(fireworks)",
994
+ "spatula",
995
+ "spear",
996
+ "spectacles",
997
+ "spice_rack",
998
+ "spider",
999
+ "crawfish",
1000
+ "sponge",
1001
+ "spoon",
1002
+ "sportswear",
1003
+ "spotlight",
1004
+ "squid_(food)",
1005
+ "squirrel",
1006
+ "stagecoach",
1007
+ "stapler_(stapling_machine)",
1008
+ "starfish",
1009
+ "statue_(sculpture)",
1010
+ "steak_(food)",
1011
+ "steak_knife",
1012
+ "steering_wheel",
1013
+ "stepladder",
1014
+ "step_stool",
1015
+ "stereo_(sound_system)",
1016
+ "stew",
1017
+ "stirrer",
1018
+ "stirrup",
1019
+ "stool",
1020
+ "stop_sign",
1021
+ "brake_light",
1022
+ "stove",
1023
+ "strainer",
1024
+ "strap",
1025
+ "straw_(for_drinking)",
1026
+ "strawberry",
1027
+ "street_sign",
1028
+ "streetlight",
1029
+ "string_cheese",
1030
+ "stylus",
1031
+ "subwoofer",
1032
+ "sugar_bowl",
1033
+ "sugarcane_(plant)",
1034
+ "suit_(clothing)",
1035
+ "sunflower",
1036
+ "sunglasses",
1037
+ "sunhat",
1038
+ "surfboard",
1039
+ "sushi",
1040
+ "mop",
1041
+ "sweat_pants",
1042
+ "sweatband",
1043
+ "sweater",
1044
+ "sweatshirt",
1045
+ "sweet_potato",
1046
+ "swimsuit",
1047
+ "sword",
1048
+ "syringe",
1049
+ "Tabasco_sauce",
1050
+ "table-tennis_table",
1051
+ "table",
1052
+ "table_lamp",
1053
+ "tablecloth",
1054
+ "tachometer",
1055
+ "taco",
1056
+ "tag",
1057
+ "taillight",
1058
+ "tambourine",
1059
+ "army_tank",
1060
+ "tank_(storage_vessel)",
1061
+ "tank_top_(clothing)",
1062
+ "tape_(sticky_cloth_or_paper)",
1063
+ "tape_measure",
1064
+ "tapestry",
1065
+ "tarp",
1066
+ "tartan",
1067
+ "tassel",
1068
+ "tea_bag",
1069
+ "teacup",
1070
+ "teakettle",
1071
+ "teapot",
1072
+ "teddy_bear",
1073
+ "telephone",
1074
+ "telephone_booth",
1075
+ "telephone_pole",
1076
+ "telephoto_lens",
1077
+ "television_camera",
1078
+ "television_set",
1079
+ "tennis_ball",
1080
+ "tennis_racket",
1081
+ "tequila",
1082
+ "thermometer",
1083
+ "thermos_bottle",
1084
+ "thermostat",
1085
+ "thimble",
1086
+ "thread",
1087
+ "thumbtack",
1088
+ "tiara",
1089
+ "tiger",
1090
+ "tights_(clothing)",
1091
+ "timer",
1092
+ "tinfoil",
1093
+ "tinsel",
1094
+ "tissue_paper",
1095
+ "toast_(food)",
1096
+ "toaster",
1097
+ "toaster_oven",
1098
+ "toilet",
1099
+ "toilet_tissue",
1100
+ "tomato",
1101
+ "tongs",
1102
+ "toolbox",
1103
+ "toothbrush",
1104
+ "toothpaste",
1105
+ "toothpick",
1106
+ "cover",
1107
+ "tortilla",
1108
+ "tow_truck",
1109
+ "towel",
1110
+ "towel_rack",
1111
+ "toy",
1112
+ "tractor_(farm_equipment)",
1113
+ "traffic_light",
1114
+ "dirt_bike",
1115
+ "trailer_truck",
1116
+ "train_(railroad_vehicle)",
1117
+ "trampoline",
1118
+ "tray",
1119
+ "trench_coat",
1120
+ "triangle_(musical_instrument)",
1121
+ "tricycle",
1122
+ "tripod",
1123
+ "trousers",
1124
+ "truck",
1125
+ "truffle_(chocolate)",
1126
+ "trunk",
1127
+ "vat",
1128
+ "turban",
1129
+ "turkey_(food)",
1130
+ "turnip",
1131
+ "turtle",
1132
+ "turtleneck_(clothing)",
1133
+ "typewriter",
1134
+ "umbrella",
1135
+ "underwear",
1136
+ "unicycle",
1137
+ "urinal",
1138
+ "urn",
1139
+ "vacuum_cleaner",
1140
+ "vase",
1141
+ "vending_machine",
1142
+ "vent",
1143
+ "vest",
1144
+ "videotape",
1145
+ "vinegar",
1146
+ "violin",
1147
+ "vodka",
1148
+ "volleyball",
1149
+ "vulture",
1150
+ "waffle",
1151
+ "waffle_iron",
1152
+ "wagon",
1153
+ "wagon_wheel",
1154
+ "walking_stick",
1155
+ "wall_clock",
1156
+ "wall_socket",
1157
+ "wallet",
1158
+ "walrus",
1159
+ "wardrobe",
1160
+ "washbasin",
1161
+ "automatic_washer",
1162
+ "watch",
1163
+ "water_bottle",
1164
+ "water_cooler",
1165
+ "water_faucet",
1166
+ "water_heater",
1167
+ "water_jug",
1168
+ "water_gun",
1169
+ "water_scooter",
1170
+ "water_ski",
1171
+ "water_tower",
1172
+ "watering_can",
1173
+ "watermelon",
1174
+ "weathervane",
1175
+ "webcam",
1176
+ "wedding_cake",
1177
+ "wedding_ring",
1178
+ "wet_suit",
1179
+ "wheel",
1180
+ "wheelchair",
1181
+ "whipped_cream",
1182
+ "whistle",
1183
+ "wig",
1184
+ "wind_chime",
1185
+ "windmill",
1186
+ "window_box_(for_plants)",
1187
+ "windshield_wiper",
1188
+ "windsock",
1189
+ "wine_bottle",
1190
+ "wine_bucket",
1191
+ "wineglass",
1192
+ "blinder_(for_horses)",
1193
+ "wok",
1194
+ "wolf",
1195
+ "wooden_spoon",
1196
+ "wreath",
1197
+ "wrench",
1198
+ "wristband",
1199
+ "wristlet",
1200
+ "yacht",
1201
+ "yogurt",
1202
+ "yoke_(animal_equipment)",
1203
+ "zebra",
1204
+ "zucchini",
1205
+ ]
lvis.py ADDED
@@ -0,0 +1,178 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import json
3
+ import datasets
4
+ from .categories import categories
5
+
6
+ _CITATION = """\
7
+ @inproceedings{gupta2019lvis,
8
+ title={ LVIS: A Dataset for Large Vocabulary Instance Segmentation},
9
+ author={Gupta, Agrim and Dollar, Piotr and Girshick, Ross},
10
+ booktitle={Proceedings of the {IEEE} Conference on Computer Vision and Pattern Recognition},
11
+ year={2019}
12
+ }
13
+ """
14
+
15
+ _DESCRIPTION = """\
16
+ Progress on object detection is enabled by datasets that focus the research community's attention on open challenges. This process led us from simple images to complex scenes and from bounding boxes to segmentation masks. In this work, we introduce LVIS (pronounced `el-vis'): a new dataset for Large Vocabulary Instance Segmentation. We plan to collect ~2 million high-quality instance segmentation masks for over 1000 entry-level object categories in 164k images. Due to the Zipfian distribution of categories in natural images, LVIS naturally has a long tail of categories with few training samples. Given that state-of-the-art deep learning methods for object detection perform poorly in the low-sample regime, we believe that our dataset poses an important and exciting new scientific challenge.
17
+ """
18
+
19
+ _HOMEPAGE = "https://www.lvisdataset.org/"
20
+
21
+ _LICENSE = "Attribution 4.0 International (CC BY 4.0)"
22
+
23
+ urls = {
24
+ "train": {
25
+ "images": "http://images.cocodataset.org/zips/train2017.zip",
26
+ "annotations": "https://dl.fbaipublicfiles.com/LVIS/lvis_v1_train.json.zip",
27
+ },
28
+ "val": {
29
+ "images": "http://images.cocodataset.org/zips/val2017.zip",
30
+ "annotations": "https://dl.fbaipublicfiles.com/LVIS/lvis_v1_val.json.zip",
31
+ },
32
+ "test": {
33
+ "images": "http://images.cocodataset.org/zips/test2017.zip",
34
+ "annotations": "https://dl.fbaipublicfiles.com/LVIS/lvis_v1_image_info_test_dev.json.zip",
35
+ },
36
+ }
37
+
38
+ segmentation_features = datasets.Features(
39
+ {
40
+ "id": datasets.Value("int32"),
41
+ "image": datasets.Image(),
42
+ "height": datasets.Value("int32"),
43
+ "width": datasets.Value("int32"),
44
+ "objects": datasets.features.Sequence(
45
+ {
46
+ "bboxes": datasets.Sequence(datasets.Value("float32")),
47
+ "classes": datasets.features.ClassLabel(names=categories),
48
+ "segmentation": datasets.Sequence(datasets.Value("float32")),
49
+ }
50
+ ),
51
+ }
52
+ )
53
+
54
+
55
+ def get_instances_annotation(instances_path):
56
+ with open(instances_path, "r") as f:
57
+ anno_instances = json.load(f)
58
+
59
+ anno_infos = dict()
60
+ images_infos = list()
61
+
62
+ for instance_info in anno_instances["annotations"]:
63
+ bbox = instance_info["bbox"]
64
+ image_id = instance_info["image_id"]
65
+ segmentation = instance_info["segmentation"][0]
66
+
67
+ if image_id in anno_infos:
68
+ anno_infos[image_id].append(
69
+ {
70
+ "segmentation": segmentation,
71
+ "bbox": bbox,
72
+ "classes": categories[instance_info["category_id"] - 1],
73
+ }
74
+ )
75
+ else:
76
+ anno_infos[image_id] = [
77
+ {
78
+ "segmentation": segmentation,
79
+ "bbox": bbox,
80
+ "classes": categories[instance_info["category_id"] - 1],
81
+ }
82
+ ]
83
+
84
+ for image in anno_instances["images"]:
85
+ # if not in anno_infos, then no instances in this image
86
+ images_infos.append(
87
+ {
88
+ "image_name": image["coco_url"].split("/")[-1],
89
+ "height": image["height"],
90
+ "width": image["width"],
91
+ "image_id": image["id"],
92
+ }
93
+ )
94
+ if image["id"] not in anno_infos:
95
+ anno_infos[image["id"]] = []
96
+
97
+ return anno_infos, images_infos
98
+
99
+
100
+ class LVIS(datasets.GeneratorBasedBuilder):
101
+
102
+ VERSION = datasets.Version("1.0.0")
103
+
104
+ BUILDER_CONFIGS = [
105
+ datasets.BuilderConfig(
106
+ name="instance_segmentation",
107
+ version=VERSION,
108
+ description="The instance segmentation variant.",
109
+ ),
110
+ ]
111
+
112
+ DEFAULT_CONFIG_NAME = "instance_segmentation"
113
+
114
+ def _info(self):
115
+
116
+ return datasets.DatasetInfo(
117
+ description=_DESCRIPTION,
118
+ features=segmentation_features,
119
+ homepage=_HOMEPAGE,
120
+ license=_LICENSE,
121
+ citation=_CITATION,
122
+ )
123
+
124
+ def _split_generators(self, dl_manager):
125
+ train = dl_manager.download_and_extract(urls["train"])
126
+ val = dl_manager.download_and_extract(urls["val"])
127
+ test = dl_manager.download_and_extract(urls["test"])
128
+
129
+ return [
130
+ datasets.SplitGenerator(
131
+ name=datasets.Split.TRAIN,
132
+ gen_kwargs={"filepath": train, "split": "train"},
133
+ ),
134
+ datasets.SplitGenerator(
135
+ name=datasets.Split.VALIDATION,
136
+ gen_kwargs={"filepath": val, "split": "val"},
137
+ ),
138
+ datasets.SplitGenerator(
139
+ name=datasets.Split.TEST,
140
+ gen_kwargs={"filepath": test, "split": "test"},
141
+ ),
142
+ ]
143
+
144
+ def _generate_examples(self, filepath, split):
145
+
146
+ image_folder = os.path.join(filepath["images"], split + "2017")
147
+ print("generating examples from = %s, split = %s", filepath, split)
148
+
149
+ annotation_path = os.path.join(
150
+ filepath["annotations"], "lvis_v1_{}.json".format(split)
151
+ )
152
+ if not os.path.exists(annotation_path):
153
+ annotation_path = os.path.join(
154
+ filepath["annotations"], "lvis_v1_image_info_test_dev.json"
155
+ )
156
+
157
+ # if test set, no annotation
158
+ # if split == "train" or split == "val":
159
+ anno_infos, images_infos = get_instances_annotation(annotation_path)
160
+ for id_, image in enumerate(images_infos):
161
+ image_path = os.path.join(image_folder, image["image_name"])
162
+ if not os.path.exists(image_path):
163
+ continue
164
+ example = {
165
+ "id": id_,
166
+ "image": os.path.abspath(image_path),
167
+ "height": image["height"],
168
+ "width": image["width"],
169
+ "objects": [
170
+ {
171
+ "bboxes": object_info["bbox"],
172
+ "classes": object_info["classes"],
173
+ "segmentation": object_info["segmentation"],
174
+ }
175
+ for object_info in anno_infos[image["image_id"]]
176
+ ],
177
+ }
178
+ yield id_, example