import os from datasets import Dataset, DatasetDict, load_dataset from datasets.features import Audio import pandas as pd import numpy as np from tqdm import tqdm # Function to load your custom dataset def load_custom_dataset(data_dir): data = { "audio": [], "text": [] } wav_dir = os.path.join(data_dir, 'wav') txt_dir = os.path.join(data_dir, 'transcription') # Assuming filenames in 'wav' and 'txt' match for wav_file in os.listdir(wav_dir): if wav_file.endswith('.wav'): txt_file = wav_file.replace('.wav', '.txt') wav_path = os.path.join(wav_dir, wav_file) txt_path = os.path.join(txt_dir, txt_file) # Read the transcription text with open(txt_path, 'r', encoding='utf-8') as f: transcription = f.read().strip() # Append to the dataset data["audio"].append(wav_path) data["text"].append(transcription) # Create a pandas dataframe df = pd.DataFrame(data) # Convert to a Hugging Face dataset dataset = Dataset.from_pandas(df) # Define the audio feature (for .wav files) dataset = dataset.cast_column("audio", Audio(sampling_rate=16_000)) # Adjust the sampling rate if needed return dataset # Load your custom dataset custom_train_dataset = load_custom_dataset("./") # Load Common Voice test set (Malayalam) common_voice_test = load_dataset("mozilla-foundation/common_voice_11_0", "ml", split="test", trust_remote_code=True) common_voice_test = common_voice_test.select_columns(["audio", "sentence"]) # Combine them into a DatasetDict dataset_dict = DatasetDict({ "train": custom_train_dataset, "test": common_voice_test }) # Now you have the `dataset_dict` with your custom train set and the Common Voice test set print(dataset_dict) from transformers import WhisperFeatureExtractor feature_extractor = WhisperFeatureExtractor.from_pretrained("openai/whisper-small") from transformers import WhisperTokenizer tokenizer = WhisperTokenizer.from_pretrained("openai/whisper-small", language="Malayalam", task="transcribe") from transformers import WhisperProcessor processor = WhisperProcessor.from_pretrained("openai/whisper-small", language="Malayalam", task="transcribe") print(dataset_dict['train'][0]) import gc # for garbage collection def prepare_dataset(batch): # Prepare input features for each audio file in the batch audio_arrays = [item["array"] for item in batch["audio"]] sampling_rates = [item["sampling_rate"] for item in batch["audio"]] # Extract features for each audio sample features = [] for audio, sr in zip(audio_arrays, sampling_rates): feature = feature_extractor(audio, sampling_rate=sr).input_features[0] feature = np.array(feature, dtype=np.float16) features.append(feature) # Free memory after each feature extraction del audio # Remove reference to the audio array del sr gc.collect() # Trigger garbage collection to free memory # Store features in batch batch["input_features"] = features # Encode target text to label ids # Consider using a tokenizer with padding strategy (e.g., `padding="max_length"` or `padding="longest"`) batch["labels"] = tokenizer(batch["text"], padding="longest", truncation=True).input_ids return batch # Function to process and save dataset in batches def process_and_save_in_batches(dataset, batch_size=1000, save_path="processed_dataset"): # Create an empty list to store the processed batches all_processed = [] # Loop through the dataset in chunks for start_idx in range(0, len(dataset), batch_size): # Get the batch slice batch = dataset[start_idx:start_idx+batch_size] batch = Dataset.from_dict(batch) # Apply the processing function to the batch processed_batch = batch.map( prepare_dataset, remove_columns=dataset.column_names, batched=True, batch_size=batch_size, num_proc = None, ) print(f"Batch {start_idx} done") # Append the processed batch to the list all_processed.append(processed_batch) # Clear memory after processing each batch del batch # Remove reference to the batch gc.collect() # Trigger garbage collection # Save each processed batch to disk processed_batch.save_to_disk(os.path.join(save_path, f"batch_{start_idx // batch_size}")) del processed_batch # Free memory after saving the batch gc.collect() # Optionally, if you want to save the whole dataset in one file at the end # You can merge all processed batches (not recommended for large datasets) final_dataset = concatenate_datasets(all_processed) final_dataset.save_to_disk(save_path) # Process and save the dataset in batches process_and_save_in_batches(dataset_dict['train'], batch_size=1000, save_path="processed_dataset")