File size: 31,979 Bytes
4607ab7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b29d824
df53f7b
4607ab7
 
b29d824
 
4607ab7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b29d824
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4607ab7
 
 
 
b29d824
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df53f7b
b29d824
4607ab7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df53f7b
 
 
 
 
 
 
 
 
 
4607ab7
1ec99fb
 
 
 
4607ab7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b29d824
4607ab7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df53f7b
 
a6dcae9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
BioASQ Task B On Biomedical Semantic QA (Involves IR, QA, Summarization qnd
More). This task uses benchmark datasets containing development and test
questions, in English, along with gold standard (reference) answers constructed
by a team of biomedical experts. The participants have to respond with relevant
concepts, articles, snippets and RDF triples, from designated resources, as well
as exact and 'ideal' answers.

Fore more information about the challenge, the organisers and the relevant
publications please visit: http://bioasq.org/
"""
import glob
import json
import os
import re
from dataclasses import dataclass
from typing import Optional

import datasets
from enum import Enum


_CITATION = """\
@article{tsatsaronis2015overview,
	title        = {
		An overview of the BIOASQ large-scale biomedical semantic indexing and
		question answering competition
	},
	author       = {
		Tsatsaronis, George and Balikas, Georgios and Malakasiotis, Prodromos
        and Partalas, Ioannis and Zschunke, Matthias and Alvers, Michael R and
		Weissenborn, Dirk and Krithara, Anastasia and Petridis, Sergios and
		Polychronopoulos, Dimitris and others
	},
	year         = 2015,
	journal      = {BMC bioinformatics},
	publisher    = {BioMed Central Ltd},
	volume       = 16,
	number       = 1,
	pages        = 138
}
"""

_DATASETNAME = "bioasq"

_BIOASQ_10B_DESCRIPTION = """\
The data are intended to be used as training and development data for BioASQ
10, which will take place during 2022. There is one file containing the data:
 - training10b.json

The file contains the data of the first nine editions of the challenge: 4234
questions [1] with their relevant documents, snippets, concepts and RDF
triples, exact and ideal answers.

Differences with BioASQ-training9b.json
- 492 new questions added from BioASQ9
    - The question with id 56c1f01eef6e394741000046 had identical body with
    602498cb1cb411341a00009e. All relevant elements from both questions
    are available in the merged question with id 602498cb1cb411341a00009e.
    - The question with id 5c7039207c78d69471000065 had identical body with
    601c317a1cb411341a000014. All relevant elements from both questions
    are available in the merged question with id 601c317a1cb411341a000014.
	- The question with id 5e4b540b6d0a27794100001c had identical body with
    602828b11cb411341a0000fc. All relevant elements from both questions
    are available in the merged question with id 602828b11cb411341a0000fc.
    - The question with id 5fdb42fba43ad31278000027 had identical body with
    5d35eb01b3a638076300000f. All relevant elements from both questions
    are available in the merged question with id 5d35eb01b3a638076300000f.
    - The question with id 601d76311cb411341a000045 had identical body with
    6060732b94d57fd87900003d. All relevant elements from both questions
    are available in the merged question with id 6060732b94d57fd87900003d.

[1] 4234 questions : 1252 factoid, 1148 yesno, 1018 summary, 816 list
"""

_BIOASQ_9B_DESCRIPTION = """\
The data are intended to be used as training and development data for BioASQ 9,
which will take place during 2021. There is one file containing the data:
 - training9b.json

The file contains the data of the first seven editions of the challenge: 3742
questions [1] with their relevant documents, snippets, concepts and RDF triples,
exact and ideal answers.

Differences with BioASQ-training8b.json
- 499 new questions added from BioASQ8
    - The question with id 5e30e689fbd6abf43b00003a had identical body with
    5880e417713cbdfd3d000001. All relevant elements from both questions
    are available in the merged question with id 5880e417713cbdfd3d000001.

[1] 3742 questions : 1091 factoid, 1033 yesno, 899 summary, 719 list
"""

_BIOASQ_8B_DESCRIPTION = """\
The data are intended to be used as training and development data for BioASQ 8,
which will take place during 2020. There is one file containing the data:
 - training8b.json

The file contains the data of the first seven editions of the challenge: 3243
questions [1] with their relevant documents, snippets, concepts and RDF triples,
exact and ideal answers.

Differences with BioASQ-training7b.json
- 500 new questions added from BioASQ7
- 4 questions were removed
    - The question with id 5717fb557de986d80d000009 had identical body with
    571e06447de986d80d000016. All relevant elements from both questions
    are available in the merged question with id 571e06447de986d80d000016.
    - The question with id 5c589ddb86df2b917400000b had identical body with
    5c6b7a9e7c78d69471000029. All relevant elements from both questions
    are available in the merged question with id 5c6b7a9e7c78d69471000029.
    - The question with id 52ffb5d12059c6d71c00007c had identical body with
    52e7870a98d023950500001a. All relevant elements from both questions
    are available in the merged question with id 52e7870a98d023950500001a.
    - The question with id 53359338d6d3ac6a3400004f had identical body with
    589a246878275d0c4a000030. All relevant elements from both questions
    are available in the merged question with id 589a246878275d0c4a000030.

**** UPDATE 25/02/2020 *****
The previous version of the dataset contained an inconsistency on question with
id "5c9904eaecadf2e73f00002e", where the "ideal_answer" field was missing.
This has been fixed.
"""

_BIOASQ_7B_DESCRIPTION = """\
The data are intended to be used as training and development data for BioASQ 7,
which will take place during 2019. There is one file containing the data:
 - BioASQ-trainingDataset7b.json

The file contains the data of the first six editions of the challenge: 2747
questions [1] with their relevant documents, snippets, concepts and RDF triples,
exact and ideal answers.

Differences with BioASQ-trainingDataset6b.json
- 500 new questions added from BioASQ6
    - 4 questions were removed
        - The question with id 569ed752ceceede94d000004 had identical body with
        a new question from BioASQ6. All relevant elements from both questions
        are available in the merged question with id 5abd31e0fcf456587200002c
        - 3 questions were removed as incomplete: 54d643023706e89528000007,
        532819afd6d3ac6a3400000f, 517545168ed59a060a00002b
    - 4 questions were revised for various confusions that have been identified
        - In 2 questions the ideal answer has been revised :
        51406e6223fec90375000009, 5172f8118ed59a060a000019
        - In 4 questions the snippets and documents list has been revised :
        51406e6223fec90375000009, 5172f8118ed59a060a000019,
        51593dc8d24251bc05000099, 5158a5b8d24251bc05000097
        - In 198 questions the documents list has updated with missing
        documents from the relevant snippets list. [2]

[1] 2747 questions : 779 factoid, 745 yesno, 667 summary, 556 list
[2] 55031181e9bde69634000014, 51406e6223fec90375000009, 54d643023706e89528000007,
    52bf1b0a03868f1b06000009, 52bf19c503868f1b06000001, 51593dc8d24251bc05000099,
    530a5117970c65fa6b000007, 553a8d78f321868558000003, 531a3fe3b166e2b806000038,
    532819afd6d3ac6a3400000f, 5158a5b8d24251bc05000097, 553653a5bc4f83e828000007,
    535d2cf09a4572de6f000004, 53386282d6d3ac6a3400005a, 517a8ce98ed59a060a000045,
    55391ce8bc4f83e828000018, 5547d700f35db75526000007, 5713bf261174fb1755000011,
    6f15c5a2ac5ed1459000012, 52b2e498f828ad283c000010, 570a7594cf1c325851000026,
    530cefaaad0bf1360c000012, 530f685c329f5fcf1e000002, 550c4011a103b78016000009,
    552faababc4f83e828000005, 54cf48acf693c3b16b00000b, 550313aae9bde6963400001f,
    551177626a8cde6b72000005, 54eded8c94afd6150400000c, 550c3754a103b78016000007,
    56f555b609dd18d46b000007, 54c26e29f693c3b16b000003, 54da0c524b1fd0d33c00000b,
    52bf1d3c03868f1b0600000d, 5343bdd6aeec6fbd07000001, 52cb9b9b03868f1b0600002d,
    55423875ec76f5e50c000002, 571366ba1174fb1755000005, 56c4d14ab04e159d0e000003,
    550c44d1a103b7801600000a, 5547a01cf35db75526000005, 55422640ccca0ce74b000004,
    54ecb66d445c3b5a5f000002, 553656c4bc4f83e828000009, 5172f8118ed59a060a000019,
    513711055274a5fb0700000e, 54d892ee014675820d000005, 52e6c92598d0239505000019,
    5353aedb288f4dae47000006, 52bf1f1303868f1b06000014, 5519113b622b19434500000f,
    52b2f1724003448f5500000b, 5525317687ecba3764000007, 554a0cadf35db7552600000f,
    55152bd246478f2f2c000002, 516c3960298dcd4e51000073, 571e417bbb137a4b0c00000a,
    551910d3622b194345000008, 54dc8ed6c0bb8dce23000002, 511a4ec01159fa8212000004,
    54d8ea2c4b1fd0d33c000002, 5148e1d6d24251bc0500003a, 515dbb3b298dcd4e51000018,
    56f7c15a09dd18d46b000012, 51475d5cd24251bc0500001b, 54db7c4ac0bb8dce23000001,
    57152ebbcb4ef8864c000002, 57134d511174fb1755000002, 55149f156a8cde6b72000013,
    56bcd422d36b5da378000005, 54ede5c394afd61504000006, 517545168ed59a060a00002b,
    5710ed19a5ed216440000003, 53442472aeec6fbd07000008, 55088e412e93f0133a000001,
    54d762653706e89528000014, 550aef0ec2af5d5b7000000a, 552435602c8b63434a000009,
    552446612c8b63434a00000c, 54d901ec4b1fd0d33c000006, 54cf45e7f693c3b16b00000a,
    52fc8b772059c6d71c00006e, 5314d05adae131f84700000d, 5512c91b6a8cde6b7200000b,
    56c5a7605795f9a73e000002, 55030a6ce9bde6963400000f, 553fac39c6a5098552000001,
    531a3a58b166e2b806000037, 5509bd6a1180f13250000002, 54f9c40ddd3fc62544000001,
    553c8fd1f32186855800000a, 56bce51cd36b5da37800000a, 550316a6e9bde69634000029,
    55031286e9bde6963400001b, 536e46f27d100faa09000012, 5502abd1e9bde69634000008,
    551af9106b348bb82c000002, 54edeb4394afd6150400000b, 5717cdd2070aa3d072000001,
    56c5ade15795f9a73e000003, 531464a6e3eabad021000014, 58a0d87a78275d0c4a000053,
    58a3160d60087bc10a00000a, 58a5d54860087bc10a000025, 58a0da5278275d0c4a000054,
    58a3264e60087bc10a00000d, 589c8ef878275d0c4a000042, 58a3428d60087bc10a00001b,
    58a3196360087bc10a00000b, 58a341eb60087bc10a000018, 58a3275960087bc10a00000f,
    58a342e760087bc10a00001c, 58bd645702b8c60953000010, 58bc8e5002b8c60953000006,
    58bc8e7a02b8c60953000007, 58a1da4e78275d0c4a000059, 58bcb83d02b8c6095300000f,
    58bc9a5002b8c60953000008, 589dee3778275d0c4a000050, 58a32efe60087bc10a000013,
    58a327bf60087bc10a000011, 58bca08702b8c6095300000a, 58bc9dbb02b8c60953000009,
    58c99fcc02b8c60953000029, 58bca2f302b8c6095300000c, 58cbf1f402b8c60953000036,
    58cdb41302b8c60953000042, 58cdb80302b8c60953000043, 58cdbaf302b8c60953000044,
    58cb305c02b8c60953000032, 58caf86f02b8c60953000030, 58c1b2f702b8c6095300001e,
    58bde18b02b8c60953000014, 58eb7898eda5a57672000006, 58caf88c02b8c60953000031,
    58e11bf76fddd3e83e00000c, 58cdbbd102b8c60953000045, 58df779d6fddd3e83e000001,
    58dbb4f08acda3452900001a, 58dbb8968acda3452900001b, 58add7699ef3c34033000009,
    58dbbbf08acda3452900001d, 58dbba438acda3452900001c, 58dd2cb08acda34529000029,
    58eb9542eda5a57672000007, 58f3ca5c70f9fc6f0f00000d, 58e9e7aa3e8b6dc87c00000d,
    58e3d9ab3e8b6dc87c000002, 58eb4ce7eda5a57672000004, 58f3c8f470f9fc6f0f00000c,
    58f3c62970f9fc6f0f00000b, 58adca6d9ef3c34033000007, 58f4b3ee70f9fc6f0f000013,
    593ff22b70f9fc6f0f000023, 5a679875b750ff4455000004, 5a774585faa1ab7d2e000005,
    5a6f7245b750ff4455000050, 5a787544faa1ab7d2e00000b, 5a74d9980384be9551000008,
    5a6a02a3b750ff4455000021, 5a6e47b1b750ff4455000049, 5a87124561bb38fb24000001,
    5a6e42f1b750ff4455000046, 5a8b1264fcd1d6a10c00001d, 5a981e66fcd1d6a10c00002f,
    5a8718c861bb38fb24000008, 5a7615af83b0d9ea6600001f, 5a87140a61bb38fb24000003,
    5a77072c9e632bc06600000a, 5a897601fcd1d6a10c000008, 5a871a6861bb38fb24000009,
    5a74e9ad0384be955100000a, 5a79d25dfaa1ab7d2e00000f, 5a6900ebb750ff445500001d,
    5a87145861bb38fb24000004, 5a871b8d61bb38fb2400000a, 5a897a06fcd1d6a10c00000b,
    5a8dc6b4fcd1d6a10c000026, 5a8712af61bb38fb24000002, 5a8714e261bb38fb24000005,
    5aa304f1d6d6b54f79000004, 5a981bcffcd1d6a10c00002d, 5aa3fa73d6d6b54f79000008,
    5aa55b45d6d6b54f7900000d, 5a981dd0fcd1d6a10c00002e, 5a9700adfcd1d6a10c00002c,
    5a9d8ffe1d1251d03b000022, 5a96c74cfcd1d6a10c000029, 5aa50086d6d6b54f7900000c,
    5a95765bfcd1d6a10c000028, 5a96f40cfcd1d6a10c00002b, 5ab144fefcf4565872000012,
    5aa67b4fd6d6b54f7900000f, 5abd5a62fcf4565872000031, 5abbe429fcf456587200001c,
    5aaef38dfcf456587200000f, 5abce6acfcf4565872000022, 5aae6499fcf456587200000c
"""

_BIOASQ_6B_DESCRIPTION = """\
The data are intended to be used as training and development data for BioASQ 6,
which will take place during 2018. There is one file containing the data:
 - BioASQ-trainingDataset6b.json

Differences with BioASQ-trainingDataset5b.json
- 500 new questions added from BioASQ5
    - 48 pairs of questions with identical bodies have been merged into one
    question having only one question-id, but all the documents, snippets,
    concepts, RDF triples and answers of both questions of the pair.
        - This normalization lead to the removal of 48 deprecated question
        ids [2] from the dataset and to the update of the 48 remaining
        questions [3].
        - In cases where a pair of questions with identical bodies had some
        inconsistency (e.g. different question type), the inconsistency has
        been solved merging the pair manually consulting the BioASQ expert team.
    - 12 questions were revised for various confusions that have been
    identified
        - In 8 questions the question type has been changed to better suit to
        the question body. The change of type lead to corresponding changes
        in exact answers existence and format : 54fc4e2e6ea36a810c000003,
        530b01a6970c65fa6b000008, 530cf54dab4de4de0c000009,
        531b2fc3b166e2b80600003c, 532819afd6d3ac6a3400000f,
        532aad53d6d3ac6a34000010, 5710ade4cf1c32585100002c,
        52f65f372059c6d71c000027
		- In 6 questions the ideal answer has been revised :
        532aad53d6d3ac6a34000010, 5710ade4cf1c32585100002c,
        53147b52e3eabad021000015, 5147c8a6d24251bc05000027,
        5509bd6a1180f13250000002, 58bbb71f22d3005309000016
		- In 5 questions the exact answer has been revised :
        5314bd7ddae131f847000006, 53130a77e3eabad02100000f,
        53148a07dae131f847000002, 53147b52e3eabad021000015,
        5147c8a6d24251bc05000027
		- In 2 questions the question body has been revised :
        52f65f372059c6d71c000027, 5503145ee9bde69634000022
    - In lists of ideal answers, documents, snippets, concepts and RDF triples
    any duplicate identical elements have been removed.
    - Ideal answers in format of one string have been converted to a list with
    one element for consistency with cases where more than one golden ideal
    answers are available. (i.e. "ideal_ans1" converted to ["ideal_ans1"])
    - For yesno questions: All exact answers have been normalized to "yes" or
    "no" (replacing "Yes", "YES" and "No")
    - For factoid questions: The format of the exact answer was normalized to a
    list of strings for each question, representing a set of synonyms
    answering the question (i.e. [`ans1`, `syn11`, ... ]).
    - For list questions: The format of the exact answer was normalized to a
    list of lists. Each internal list represents one element of the answer
    as a set of synonyms
    (i.e. [[`ans1`, `syn11`, `syn12`], [`ans2`], [`ans3`, `syn31`] ...]).
    - Empty elements, e.g. empty lists of documents have been removed.

[1] 2251 questions : 619 factoid, 616 yesno, 531 summary, 485 list
[2] The 48 deprecated question ids are : 52f8b2902059c6d71c000053,
    52f11bf22059c6d71c000005, 52f77edb2059c6d71c000028, 52ed795098d0239505000032,
    56d1a9baab2fed4a47000002, 52f7d3472059c6d71c00002f, 52fbe2bf2059c6d71c00006c,
    52ec961098d023950500002a, 52e8e98298d0239505000020, 56cae5125795f9a73e000024,
    530cefaaad0bf1360c000007, 530cefaaad0bf1360c000005, 52d63b2803868f1b0600003a,
    530cefaaad0bf1360c00000a, 516425ff298dcd4e51000051, 55191149622b194345000010,
    52fa70142059c6d71c000056, 52f77f4d2059c6d71c00002a, 52efc016c8da89891000001a,
    52efc001c8da898910000019, 52f896ae2059c6d71c000045, 52eceada98d023950500002d,
    52efc05cc8da89891000001c, 515e078e298dcd4e51000031, 52fe54252059c6d71c000079,
    514217a6d24251bc05000005, 52d1389303868f1b06000032, 530cf4d5e2bfff940c000003,
    52fc946d2059c6d71c000071, 52e8e99e98d0239505000021, 52ef7786c8da898910000015,
    52d8494698d0239505000007, 530cf51d5610acba0c000001, 52f637972059c6d71c000025,
    52e9f99798d0239505000025, 515de572298dcd4e51000021, 52fe4ad52059c6d71c000077,
    52f65bf02059c6d71c000026, 52e8e9d298d0239505000022, 52fa74052059c6d71c00005a,
    52ffbddf2059c6d71c00007d, 56bc932aac7ad1001900001c, 56c02883ef6e394741000017,
    52d2b75403868f1b06000035, 52f118aa2059c6d71c000003, 52e929eb98d0239505000023,
    532c12f2d6d3ac6a3400001d, 52d8466298d0239505000006'
[3] The 48 questions resulting from merging with their pair have the
    following ids: 5149aafcd24251bc05000045, 515db020298dcd4e51000011,
    515db54c298dcd4e51000016, 51680a49298dcd4e51000062, 52b06a68f828ad283c000005,
    52bf1aa503868f1b06000006, 52bf1af803868f1b06000008, 52bf1d6003868f1b0600000e,
    52cb9b9b03868f1b0600002d, 52d2818403868f1b06000033, 52df887498d023950500000c,
    52e0c9a298d0239505000010, 52e203bc98d0239505000011, 52e62bae98d0239505000015,
    52e6c92598d0239505000019, 52e7bbf698d023950500001d, 52ea605098d0239505000028,
    52ece29f98d023950500002c, 52ecf2dd98d023950500002e, 52ef7754c8da898910000014,
    52f112bb2059c6d71c000002, 52f65f372059c6d71c000027, 52f77f752059c6d71c00002b,
    52f77f892059c6d71c00002c, 52f89ee42059c6d71c00004d, 52f89f4f2059c6d71c00004e,
    52f89fba2059c6d71c00004f, 52f89fc62059c6d71c000050, 52f89fd32059c6d71c000051,
    52fa6ac72059c6d71c000055, 52fa73c62059c6d71c000058, 52fa73e82059c6d71c000059,
    52fa74252059c6d71c00005b, 52fc8b772059c6d71c00006e, 52fc94572059c6d71c000070,
    52fc94ae2059c6d71c000073, 52fc94db2059c6d71c000074, 52fe52702059c6d71c000078,
    52fe58f82059c6d71c00007a, 530cefaaad0bf1360c000008, 530cefaaad0bf1360c000010,
    533ba218fd9a95ea0d000007, 534bb147aeec6fbd07000014, 55167dec46478f2f2c00000a,
    56c04412ef6e39474100001b, 56c1f01eef6e394741000046, 56c81fd15795f9a73e00000c,
    587d016ed673c3eb14000002
"""

_BIOASQ_5B_DESCRIPTION = """\
The data are intended to be used as training and development data for BioASQ 5,
which will take place during 2017. There is one file containing the data:
 - BioASQ-trainingDataset5b.json

The file contains the data of the first four editions of the challenge: 1799
questions with their relevant documents, snippets, concepts and rdf triples,
exact and ideal answers.
"""

_BIOASQ_4B_DESCRIPTION = """\
The data are intended to be used as training and development data for BioASQ 4,
which will take place during 2016. There is one file containing the data:
 - BioASQ-trainingDataset4b.json

The file contains the data of the first three editions of the challenge: 1307
questions with their relevant documents, snippets, concepts and rdf triples,
exact and ideal answers from the first two editions and 497 questions with
similar annotations from the third editions of the challenge.
"""

_BIOASQ_3B_DESCRIPTION = """No README provided."""

_BIOASQ_2B_DESCRIPTION = """No README provided."""

_DESCRIPTION = {
    "bioasq_10b": _BIOASQ_10B_DESCRIPTION,
    "bioasq_9b": _BIOASQ_9B_DESCRIPTION,
    "bioasq_8b": _BIOASQ_8B_DESCRIPTION,
    "bioasq_7b": _BIOASQ_7B_DESCRIPTION,
    "bioasq_6b": _BIOASQ_6B_DESCRIPTION,
    "bioasq_5b": _BIOASQ_5B_DESCRIPTION,
    "bioasq_4b": _BIOASQ_4B_DESCRIPTION,
    "bioasq_3b": _BIOASQ_3B_DESCRIPTION,
    "bioasq_2b": _BIOASQ_2B_DESCRIPTION,
}

_HOMEPAGE = "http://participants-area.bioasq.org/datasets/"

# Data access reqires registering with BioASQ.
# See http://participants-area.bioasq.org/accounts/register/
_LICENSE = "https://www.nlm.nih.gov/databases/download/terms_and_conditions.html"

_URLs = {
    "bioasq_10b": ["BioASQ-training10b.zip", None],
    "bioasq_9b": ["BioASQ-training9b.zip", "Task9BGoldenEnriched.zip"],
    "bioasq_8b": ["BioASQ-training8b.zip", "Task8BGoldenEnriched.zip"],
    "bioasq_7b": ["BioASQ-training7b.zip", "Task7BGoldenEnriched.zip"],
    "bioasq_6b": ["BioASQ-training6b.zip", "Task6BGoldenEnriched.zip"],
    "bioasq_5b": ["BioASQ-training5b.zip", "Task5BGoldenEnriched.zip"],
    "bioasq_4b": ["BioASQ-training4b.zip", "Task4BGoldenEnriched.zip"],
    "bioasq_3b": ["BioASQ-trainingDataset3b.zip", "Task3BGoldenEnriched.zip"],
    "bioasq_2b": ["BioASQ-trainingDataset2b.zip", "Task2BGoldenEnriched.zip"],
}

class Tasks(Enum):
    NAMED_ENTITY_RECOGNITION = "NER"
    NAMED_ENTITY_DISAMBIGUATION = "NED"
    EVENT_EXTRACTION = "EE"
    RELATION_EXTRACTION = "RE"
    COREFERENCE_RESOLUTION = "COREF"

    QUESTION_ANSWERING = "QA"

    TEXTUAL_ENTAILMENT = "TE"

    SEMANTIC_SIMILARITY = "STS"

    PARAPHRASING = "PARA"
    TRANSLATION = "TRANSL"
    SUMMARIZATION = "SUM"

    TEXT_CLASSIFICATION = "TXTCLASS"

_SUPPORTED_TASKS = [Tasks.QUESTION_ANSWERING]
_SOURCE_VERSION = "1.0.0"
_BIGBIO_VERSION = "1.0.0"

qa_features = datasets.Features(
    {
        "id": datasets.Value("string"),
        "question_id": datasets.Value("string"),
        "document_id": datasets.Value("string"),
        "question": datasets.Value("string"),
        "type": datasets.Value("string"),
        "choices": [datasets.Value("string")],
        "context": datasets.Value("string"),
        "answer": datasets.Sequence(datasets.Value("string")),
    }
)


@dataclass
class BigBioConfig(datasets.BuilderConfig):
    """BuilderConfig for BigBio."""

    name: str = None
    version: datasets.Version = None
    description: str = None
    schema: str = None
    subset_id: str = None
    type_subset: Optional[str] = None


class BioasqTaskBDataset(datasets.GeneratorBasedBuilder):
    """
    BioASQ Task B On Biomedical Semantic QA.
    Creates configs for BioASQ2 through BioASQ10.
    """

    DEFAULT_CONFIG_NAME = "bioasq_9b_source"
    SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
    BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)

    # BioASQ2 through BioASQ10
    BUILDER_CONFIGS = []
    for version in range(2, 11):
        BUILDER_CONFIGS.append(
            BigBioConfig(
                name=f"bioasq_{version}b_source",
                version=SOURCE_VERSION,
                description=f"bioasq{version} Task B source schema",
                schema="source",
                subset_id=f"bioasq_{version}b",
            )
        )

        BUILDER_CONFIGS.append(
            BigBioConfig(
                name=f"bioasq_{version}b_bigbio_qa",
                version=BIGBIO_VERSION,
                description=f"bioasq{version} Task B in simplified BigBio schema",
                schema="bigbio_qa",
                subset_id=f"bioasq_{version}b",
            )
        )
    BUILDER_CONFIGS.append(
        BigBioConfig(
            name="bioasq_7b_bigbio_qa_yes_no_only",
            version=BIGBIO_VERSION,
            description="bioasq7 Task B in simplified BigBio schema",
            schema="bigbio_qa",
            subset_id="bioasq_7b",
            type_subset="yesno"
        )
    )

    @property
    def manual_download_instructions(self):
        return "Requires manual download. Download from http://participants-area.bioasq.org/datasets/"

    def _info(self):

        # BioASQ Task B source schema
        if self.config.schema == "source":
            features = datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "type": datasets.Value("string"),
                    "body": datasets.Value("string"),
                    "documents": datasets.Sequence(datasets.Value("string")),
                    "concepts": datasets.Sequence(datasets.Value("string")),
                    "ideal_answer": datasets.Sequence(datasets.Value("string")),
                    "exact_answer": datasets.Sequence(datasets.Value("string")),
                    "triples": [
                        {
                            "p": datasets.Value("string"),
                            "s": datasets.Value("string"),
                            "o": datasets.Value("string"),
                        }
                    ],
                    "snippets": [
                        {
                            "offsetInBeginSection": datasets.Value("int32"),
                            "offsetInEndSection": datasets.Value("int32"),
                            "text": datasets.Value("string"),
                            "beginSection": datasets.Value("string"),
                            "endSection": datasets.Value("string"),
                            "document": datasets.Value("string"),
                        }
                    ],
                }
            )
        # simplified schema for QA tasks
        elif self.config.schema == "bigbio_qa":
            features = qa_features

        return datasets.DatasetInfo(
            description=_DESCRIPTION[self.config.subset_id],
            features=features,
            supervised_keys=None,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _dump_gold_json(self, data_dir):
        """
        BioASQ test data is split into multiple records {9B1_golden.json,...,9B5_golden.json}
        We combine these files into a single test set file 9Bx_golden.json
        """
        version = re.search(r"bioasq_([0-9]+)b", self.config.subset_id).group(1)
        gold_fpath = os.path.join(
            data_dir, f"Task{version}BGoldenEnriched/bx_golden.json"
        )

        if not os.path.exists(gold_fpath):
            # combine all gold json files
            filelist = glob.glob(os.path.join(data_dir, "*/*.json"))
            data = {"questions": []}
            for fname in sorted(filelist):
                with open(fname, "rt", encoding="utf-8") as file:
                    data["questions"].extend(json.load(file)["questions"])
            # dump gold to json
            with open(gold_fpath, "wt", encoding="utf-8") as file:
                json.dump(data, file, indent=2)

        return f"Task{version}BGoldenEnriched/bx_golden.json"

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""

        if self.config.data_dir is None:
            raise ValueError(
                "This is a local dataset. Please pass the data_dir kwarg to load_dataset."
            )

        train_dir, test_dir = dl_manager.download_and_extract(
            [
                os.path.join(self.config.data_dir, _url)
                for _url in _URLs[self.config.subset_id]
            ]
        )
        gold_fpath = self._dump_gold_json(test_dir)

        # older versions of bioasq have different folder formats
        train_fpaths = {
            "bioasq_2b": "BioASQ_2013_TaskB/BioASQ-trainingDataset2b.json",
            "bioasq_3b": "BioASQ-trainingDataset3b.json",
            "bioasq_4b": "BioASQ-training4b/BioASQ-trainingDataset4b.json",
            "bioasq_5b": "BioASQ-training5b/BioASQ-trainingDataset5b.json",
            "bioasq_6b": "BioASQ-training6b/BioASQ-trainingDataset6b.json",
            "bioasq_7b": "BioASQ-training7b/trainining7b.json",
            "bioasq_8b": "training8b.json",  # HACK - this zipfile strips the dirname
            "bioasq_9b": "BioASQ-training9b/training9b.json",
            "bioasq_10b": "BioASQ-training10b/training10b.json",
        }

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepath": os.path.join(
                        train_dir, train_fpaths[self.config.subset_id]
                    ),
                    "split": "train",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "filepath": os.path.join(test_dir, gold_fpath),
                    "split": "test",
                },
            ),
        ]

    def _get_exact_answer(self, record):
        """The value exact_answer can be in different formats based on question type."""
        if record["type"] == "yesno":
            exact_answer = [record["exact_answer"]]
        elif record["type"] == "summary":
            exact_answer = []
            # summary question types only have an ideal answer, so use that for bigbio
            if self.config.schema == "bigbio_qa":
                exact_answer = (
                    record["ideal_answer"]
                    if isinstance(record["ideal_answer"], list)
                    else [record["ideal_answer"]]
                )

        elif record["type"] == "list":
            exact_answer = record["exact_answer"]
        elif record["type"] == "factoid":
            # older version of bioasq sometimes represent this as as string
            exact_answer = (
                record["exact_answer"]
                if isinstance(record["exact_answer"], list)
                else [record["exact_answer"]]
            )
        return exact_answer

    def _generate_examples(self, filepath, split):
        """Yields examples as (key, example) tuples."""

        if self.config.schema == "source":
            with open(filepath, encoding="utf-8") as file:
                data = json.load(file)
                for i, record in enumerate(data["questions"]):
                    yield i, {
                        "id": record["id"],
                        "type": record["type"],
                        "body": record["body"],
                        "documents": record["documents"],
                        "concepts": record["concepts"] if "concepts" in record else [],
                        "triples": record["triples"] if "triples" in record else [],
                        "ideal_answer": record["ideal_answer"]
                        if isinstance(record["ideal_answer"], list)
                        else [record["ideal_answer"]],
                        "exact_answer": self._get_exact_answer(record),
                        "snippets": record["snippets"] if "snippets" in record else [],
                    }

        elif self.config.schema == "bigbio_qa":
            with open(filepath, encoding="utf-8") as file:
                uid = 0
                data = json.load(file)
                for record in data["questions"]:
                    # for questions that do not have snippets, skip
                    if "snippets" not in record:
                        continue
                    if self.config.type_subset is not None and self.config.type_subset != record["type"]:
                        continue
                    snippets = record['snippets']
                    snippets_text = [snippet['text'].replace(
                        '\n', ' ') for snippet in snippets]
                    passage = " ".join(snippets_text)

                    yield uid, {
                        "id": record["id"],
                        "document_id": record["id"],
                        "question_id": record["id"],
                        "question": record["body"],
                        "type": record["type"],
                        "choices": [],
                        "context": passage,
                        "answer": self._get_exact_answer(record),
                    }
                    uid += 1