import datasets from glob import glob import json import zipfile from random import shuffle _DESCRIPTION = """\ Masader is the largest public catalogue for Arabic NLP datasets, which consists of more than 200 datasets annotated with 25 attributes. """ _CITATION = """\ @misc{alyafeai2021masader, title={Masader: Metadata Sourcing for Arabic Text and Speech Data Resources}, author={Zaid Alyafeai and Maraim Masoud and Mustafa Ghaleb and Maged S. Al-shaibani}, year={2021}, eprint={2110.06744}, archivePrefix={arXiv}, primaryClass={cs.CL} } """ class MasaderConfig(datasets.BuilderConfig): """BuilderConfig for Masader.""" def __init__(self, **kwargs): """BuilderConfig for MetRec. Args: **kwargs: keyword arguments forwarded to super. """ super(MasaderConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs) class Masader(datasets.GeneratorBasedBuilder): """Masaderdataset.""" BUILDER_CONFIGS = [ MasaderConfig( name="plain_text", description="Plain text", ) ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { 'Name': datasets.Value("string"), 'Subsets': [{'Name':datasets.Value("string"), 'Dialect':datasets.Value("string") , 'Volume':datasets.Value("string") , 'Unit':datasets.Value("string")}], 'HF Link': datasets.Value("string"), 'Link': datasets.Value("string"), 'License': datasets.Value("string"), 'Year': datasets.Value("int32"), 'Language': datasets.Value("string"), 'Dialect': datasets.Value("string"), 'Domain': datasets.Value("string"), 'Form': datasets.Value("string"), 'Collection Style': datasets.Value("string"), 'Description': datasets.Value("string"), 'Volume': datasets.Value("string"), 'Unit': datasets.Value("string"), 'Ethical Risks': datasets.Value("string"), 'Provider': datasets.Value("string"), 'Derived From': datasets.Value("string"), 'Paper Title': datasets.Value("string"), 'Paper Link': datasets.Value("string"), 'Script': datasets.Value("string"), 'Tokenized': datasets.Value("string"), 'Host': datasets.Value("string"), 'Access': datasets.Value("string"), 'Cost': datasets.Value("string"), 'Test Split': datasets.Value("string"), 'Tasks': datasets.Value("string"), 'Venue Title': datasets.Value("string"), 'Citations': datasets.Value("string"), 'Venue Type': datasets.Value("string"), 'Venue Name': datasets.Value("string"), 'Authors': datasets.Value("string"), 'Affiliations': datasets.Value("string"), 'Abstract': datasets.Value("string"), 'Added By': datasets.Value("string"), } ), supervised_keys=None, homepage="https://github.com/arbml/Masader", citation=_CITATION,) def extract_all(self, dir): zip_files = glob(dir+'/**/**.zip', recursive=True) for file in zip_files: with zipfile.ZipFile(file) as item: item.extractall('/'.join(file.split('/')[:-1])) def _split_generators(self, dl_manager): url = ['https://github.com/ARBML/masader/archive/main.zip'] downloaded_files = dl_manager.download_and_extract(url) self.extract_all(downloaded_files[0]) all_files = sorted(glob(downloaded_files[0]+'/masader-main/datasets/**.json')) shuffle(all_files) return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={'filepaths':{'inputs':all_files} })] def _generate_examples(self, filepaths): for idx,filepath in enumerate(filepaths['inputs']): with open(filepath, 'r') as f: data = json.load(f) yield idx, data