Datasets:
File size: 15,975 Bytes
ecd7ba9 a556fb1 ecd7ba9 a556fb1 0e1914f a556fb1 e766167 a556fb1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 |
---
size_categories: 10K<n<100K
tags:
- rlfh
- argilla
- human-feedback
---
# Dataset Card for go_emotions_raw
This dataset has been created with [Argilla](https://docs.argilla.io).
As shown in the sections below, this dataset can be loaded into Argilla as explained in [Load with Argilla](#load-with-argilla), or used directly with the `datasets` library in [Load with `datasets`](#load-with-datasets).
## Dataset Description
- **Homepage:** https://argilla.io
- **Repository:** https://github.com/argilla-io/argilla
- **Paper:**
- **Leaderboard:**
- **Point of Contact:**
### Dataset Summary
It contains the raw version of [go_emotions](https://huggingface.co/datasets/go_emotions) as a `FeedbackDataset`. Each of the original questions are defined a single
`FeedbackRecord` and contain the `responses` from each annotator. The final labels in the *simplified* version of the dataset have been used as `suggestions`, so that we
can use this dataset to showcase the metrics related to the agreement between annotators as well as the `responses` vs `suggestions` metrics.
This dataset contains:
* A dataset configuration file conforming to the Argilla dataset format named `argilla.yaml`. This configuration file will be used to configure the dataset when using the `FeedbackDataset.from_huggingface` method in Argilla.
* Dataset records in a format compatible with HuggingFace `datasets`. These records will be loaded automatically when using `FeedbackDataset.from_huggingface` and can be loaded independently using the `datasets` library via `load_dataset`.
* The [annotation guidelines](#annotation-guidelines) that have been used for building and curating the dataset, if they've been defined in Argilla.
### Load with Argilla
To load with Argilla, you'll just need to install Argilla as `pip install argilla --upgrade` and then use the following code:
```python
import argilla as rg
ds = rg.FeedbackDataset.from_huggingface("argilla/go_emotions_raw")
```
### Load with `datasets`
To load this dataset with `datasets`, you'll just need to install `datasets` as `pip install datasets --upgrade` and then use the following code:
```python
from datasets import load_dataset
ds = load_dataset("argilla/go_emotions_raw")
```
### Supported Tasks and Leaderboards
This dataset can contain [multiple fields, questions and responses](https://docs.argilla.io/en/latest/conceptual_guides/data_model.html#feedback-dataset) so it can be used for different NLP tasks, depending on the configuration. The dataset structure is described in the [Dataset Structure section](#dataset-structure).
There are no leaderboards associated with this dataset.
### Languages
[More Information Needed]
## Dataset Structure
### Data in Argilla
The dataset is created in Argilla with: **fields**, **questions**, **suggestions**, **metadata**, **vectors**, and **guidelines**.
The **fields** are the dataset records themselves, for the moment just text fields are supported. These are the ones that will be used to provide responses to the questions.
| Field Name | Title | Type | Required | Markdown |
| ---------- | ----- | ---- | -------- | -------- |
| text | Text | FieldTypes.text | True | False |
The **questions** are the questions that will be asked to the annotators. They can be of different types, such as rating, text, label_selection, multi_label_selection, or ranking.
| Question Name | Title | Type | Required | Description | Values/Labels |
| ------------- | ----- | ---- | -------- | ----------- | ------------- |
| label | Label | QuestionTypes.multi_label_selection | True | Classify the text by selecting the correct label from the given list of labels. | ['admiration', 'amusement', 'anger', 'annoyance', 'approval', 'caring', 'confusion', 'curiosity', 'desire', 'disappointment', 'disapproval', 'disgust', 'embarrassment', 'excitement', 'fear', 'gratitude', 'grief', 'joy', 'love', 'nervousness', 'optimism', 'pride', 'realization', 'relief', 'remorse', 'sadness', 'surprise', 'neutral'] |
The **suggestions** are human or machine generated recommendations for each question to assist the annotator during the annotation process, so those are always linked to the existing questions, and named appending "-suggestion" and "-suggestion-metadata" to those, containing the value/s of the suggestion and its metadata, respectively. So on, the possible values are the same as in the table above, but the column name is appended with "-suggestion" and the metadata is appended with "-suggestion-metadata".
The **metadata** is a dictionary that can be used to provide additional information about the dataset record. This can be useful to provide additional context to the annotators, or to provide additional information about the dataset record itself. For example, you can use this to provide a link to the original source of the dataset record, or to provide additional information about the dataset record itself, such as the author, the date, or the source. The metadata is always optional, and can be potentially linked to the `metadata_properties` defined in the dataset configuration file in `argilla.yaml`.
| Metadata Name | Title | Type | Values | Visible for Annotators |
| ------------- | ----- | ---- | ------ | ---------------------- |
The **guidelines**, are optional as well, and are just a plain string that can be used to provide instructions to the annotators. Find those in the [annotation guidelines](#annotation-guidelines) section.
### Data Instances
An example of a dataset instance in Argilla looks as follows:
```json
{
"external_id": null,
"fields": {
"text": " \"If you don\u0027t wear BROWN AND ORANGE...YOU DON\u0027T MATTER!\" We need a tshirt with that on it asap! "
},
"metadata": {},
"responses": [
{
"status": "submitted",
"user_id": "00000000-0000-0000-0000-000000000001",
"values": {
"label": {
"value": [
"neutral"
]
}
}
},
{
"status": "submitted",
"user_id": "00000000-0000-0000-0000-000000000016",
"values": {
"label": {
"value": [
"anger",
"annoyance",
"optimism"
]
}
}
},
{
"status": "submitted",
"user_id": "00000000-0000-0000-0000-000000000028",
"values": {
"label": {
"value": [
"approval"
]
}
}
},
{
"status": "submitted",
"user_id": "00000000-0000-0000-0000-000000000039",
"values": {
"label": {
"value": [
"neutral"
]
}
}
},
{
"status": "submitted",
"user_id": "00000000-0000-0000-0000-000000000048",
"values": {
"label": {
"value": [
"annoyance"
]
}
}
}
],
"suggestions": [
{
"agent": null,
"question_name": "label",
"score": null,
"type": "human",
"value": [
"annoyance",
"neutral"
]
}
],
"vectors": {}
}
```
While the same record in HuggingFace `datasets` looks as follows:
```json
{
"external_id": null,
"label": [
{
"status": "submitted",
"user_id": "00000000-0000-0000-0000-000000000001",
"value": [
"neutral"
]
},
{
"status": "submitted",
"user_id": "00000000-0000-0000-0000-000000000016",
"value": [
"anger",
"annoyance",
"optimism"
]
},
{
"status": "submitted",
"user_id": "00000000-0000-0000-0000-000000000028",
"value": [
"approval"
]
},
{
"status": "submitted",
"user_id": "00000000-0000-0000-0000-000000000039",
"value": [
"neutral"
]
},
{
"status": "submitted",
"user_id": "00000000-0000-0000-0000-000000000048",
"value": [
"annoyance"
]
}
],
"label-suggestion": [
"annoyance",
"neutral"
],
"label-suggestion-metadata": {
"agent": null,
"score": null,
"type": "human"
},
"metadata": "{}",
"text": " \"If you don\u0027t wear BROWN AND ORANGE...YOU DON\u0027T MATTER!\" We need a tshirt with that on it asap! "
}
```
### Data Fields
Among the dataset fields, we differentiate between the following:
* **Fields:** These are the dataset records themselves, for the moment just text fields are supported. These are the ones that will be used to provide responses to the questions.
* **text** is of type `FieldTypes.text`.
* **Questions:** These are the questions that will be asked to the annotators. They can be of different types, such as `RatingQuestion`, `TextQuestion`, `LabelQuestion`, `MultiLabelQuestion`, and `RankingQuestion`.
* **label** is of type `QuestionTypes.multi_label_selection` with the following allowed values ['admiration', 'amusement', 'anger', 'annoyance', 'approval', 'caring', 'confusion', 'curiosity', 'desire', 'disappointment', 'disapproval', 'disgust', 'embarrassment', 'excitement', 'fear', 'gratitude', 'grief', 'joy', 'love', 'nervousness', 'optimism', 'pride', 'realization', 'relief', 'remorse', 'sadness', 'surprise', 'neutral'], and description "Classify the text by selecting the correct label from the given list of labels.".
* **Suggestions:** As of Argilla 1.13.0, the suggestions have been included to provide the annotators with suggestions to ease or assist during the annotation process. Suggestions are linked to the existing questions, are always optional, and contain not just the suggestion itself, but also the metadata linked to it, if applicable.
* (optional) **label-suggestion** is of type `QuestionTypes.multi_label_selection` with the following allowed values ['admiration', 'amusement', 'anger', 'annoyance', 'approval', 'caring', 'confusion', 'curiosity', 'desire', 'disappointment', 'disapproval', 'disgust', 'embarrassment', 'excitement', 'fear', 'gratitude', 'grief', 'joy', 'love', 'nervousness', 'optimism', 'pride', 'realization', 'relief', 'remorse', 'sadness', 'surprise', 'neutral'].
Additionally, we also have two more fields that are optional and are the following:
* **metadata:** This is an optional field that can be used to provide additional information about the dataset record. This can be useful to provide additional context to the annotators, or to provide additional information about the dataset record itself. For example, you can use this to provide a link to the original source of the dataset record, or to provide additional information about the dataset record itself, such as the author, the date, or the source. The metadata is always optional, and can be potentially linked to the `metadata_properties` defined in the dataset configuration file in `argilla.yaml`.
* **external_id:** This is an optional field that can be used to provide an external ID for the dataset record. This can be useful if you want to link the dataset record to an external resource, such as a database or a file.
### Data Splits
The dataset contains a single split, which is `train`.
## Dataset Creation
### Script used for the generation
```python
import argilla as rg
from datasets import load_dataset
import uuid
from datasets import concatenate_datasets
ds = load_dataset("go_emotions", "raw", split="train")
ds_prepared = load_dataset("go_emotions")
_CLASS_NAMES = [
"admiration",
"amusement",
"anger",
"annoyance",
"approval",
"caring",
"confusion",
"curiosity",
"desire",
"disappointment",
"disapproval",
"disgust",
"embarrassment",
"excitement",
"fear",
"gratitude",
"grief",
"joy",
"love",
"nervousness",
"optimism",
"pride",
"realization",
"relief",
"remorse",
"sadness",
"surprise",
"neutral",
]
label_to_id = {label: i for i, label in enumerate(_CLASS_NAMES)}
id_to_label = {i: label for i, label in enumerate(_CLASS_NAMES)}
# Concatenate the datasets and transform to pd.DataFrame
ds_prepared = concatenate_datasets([ds_prepared["train"], ds_prepared["validation"], ds_prepared["test"]])
df_prepared = ds_prepared.to_pandas()
# Obtain the final labels as a dict, to later include these as suggestions
labels_prepared = {}
for idx in df_prepared.index:
labels = [id_to_label[label_id] for label_id in df_prepared['labels'][idx]]
labels_prepared[df_prepared['id'][idx]] = labels
# Add labels to the dataset and keep only the relevant columns
def add_labels(ex):
labels = []
for label in _CLASS_NAMES:
if ex[label] == 1:
labels.append(label)
ex["labels"] = labels
return ex
ds = ds.map(add_labels)
df = ds.select_columns(["text", "labels", "rater_id", "id"]).to_pandas()
# Create a FeedbackDataset for text classification
feedback_dataset = rg.FeedbackDataset.for_text_classification(labels=_CLASS_NAMES, multi_label=True)
# Create the records with the original responses, and use as suggestions
# the final labels in the "simplified" go_emotions dataset.
records = []
for text, df_text in df.groupby("text"):
responses = []
for rater_id, df_raters in df_text.groupby("rater_id"):
responses.append(
{
"values": {"label": {"value": df_raters["labels"].iloc[0].tolist()}},
"status": "submitted",
"user_id": uuid.UUID(int=rater_id),
}
)
suggested_labels = labels_prepared.get(df_raters["id"].iloc[0], None)
if not suggested_labels:
continue
suggestion = [
{
"question_name": "label",
"value": suggested_labels,
"type": "human",
}
]
records.append(
rg.FeedbackRecord(
fields={"text": df_raters["text"].iloc[0]},
responses=responses,
suggestions=suggestion
)
)
feedback_dataset.add_records(records)
# Push to the hub
feedback_dataset.push_to_huggingface("plaguss/go_emotions_raw")
```
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation guidelines
This is a text classification dataset that contains texts and labels. Given a set of texts and a predefined set of labels, the goal of text classification is to assign one or more labels to each text based on its content. Please classify the texts by making the correct selection.
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
[More Information Needed]
### Contributions
[More Information Needed] |