arjundd commited on
Commit
710d397
1 Parent(s): 5b68332

adding meddlr testing data

Browse files
test-data/sample-gdrive-folder/hello-world-2.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ Hello world!
test-data/sample-gdrive-folder/hello-world.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ Hello world!
test-data/test-exps/basic-cpu-orig/config.yaml ADDED
@@ -0,0 +1,190 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ AUG_TEST:
2
+ UNDERSAMPLE:
3
+ ACCELERATIONS: &id001
4
+ - 6
5
+ AUG_TRAIN:
6
+ MOTION_P: 0.2
7
+ MRI_RECON:
8
+ AUG_SENSITIVITY_MAPS: true
9
+ SCHEDULER_P:
10
+ IGNORE: false
11
+ TRANSFORMS: []
12
+ NOISE_P: 0.2
13
+ UNDERSAMPLE:
14
+ ACCELERATIONS: *id001
15
+ CALIBRATION_SIZE: 20
16
+ CENTER_FRACTIONS: []
17
+ MAX_ATTEMPTS: 30
18
+ NAME: PoissonDiskMaskFunc
19
+ USE_MOTION: false
20
+ USE_NOISE: false
21
+ CUDNN_BENCHMARK: false
22
+ DATALOADER:
23
+ ALT_SAMPLER:
24
+ PERIOD_SUPERVISED: 1
25
+ PERIOD_UNSUPERVISED: 1
26
+ DATA_KEYS: []
27
+ DROP_LAST: true
28
+ FILTER:
29
+ BY: []
30
+ GROUP_SAMPLER:
31
+ AS_BATCH_SAMPLER: false
32
+ BATCH_BY: []
33
+ NUM_WORKERS: 8
34
+ PREFETCH_FACTOR: 2
35
+ SAMPLER_TRAIN: ''
36
+ SUBSAMPLE_TRAIN:
37
+ NUM_TOTAL: -1
38
+ NUM_TOTAL_BY_GROUP: []
39
+ NUM_UNDERSAMPLED: 0
40
+ NUM_VAL: -1
41
+ NUM_VAL_BY_GROUP: []
42
+ SEED: 1000
43
+ DATASETS:
44
+ TEST:
45
+ - mridata_knee_2019_test
46
+ TRAIN:
47
+ - mridata_knee_2019_train
48
+ VAL:
49
+ - mridata_knee_2019_val
50
+ DESCRIPTION:
51
+ BRIEF: ''
52
+ ENTITY_NAME: ss_recon
53
+ EXP_NAME: ''
54
+ PROJECT_NAME: ss_recon
55
+ TAGS: []
56
+ MODEL:
57
+ A2R:
58
+ META_ARCHITECTURE: GeneralizedUnrolledCNN
59
+ USE_SUPERVISED_CONSISTENCY: false
60
+ CONSISTENCY:
61
+ AUG:
62
+ MOTION:
63
+ RANGE:
64
+ - 0.2
65
+ - 0.5
66
+ SCHEDULER:
67
+ WARMUP_ITERS: 0
68
+ WARMUP_METHOD: ''
69
+ MRI_RECON:
70
+ AUG_SENSITIVITY_MAPS: true
71
+ SCHEDULER_P:
72
+ IGNORE: false
73
+ TRANSFORMS: []
74
+ NOISE:
75
+ MASK:
76
+ RHO: 1.0
77
+ SCHEDULER:
78
+ WARMUP_ITERS: 0
79
+ WARMUP_METHOD: ''
80
+ STD_DEV: &id002
81
+ - 1
82
+ LATENT_LOSS_NAME: mag_l1
83
+ LATENT_LOSS_WEIGHT: 0.1
84
+ LOSS_NAME: l1
85
+ LOSS_WEIGHT: 0.1
86
+ NUM_LATENT_LAYERS: 1
87
+ USE_CONSISTENCY: true
88
+ USE_LATENT: false
89
+ CS:
90
+ MAX_ITER: 200
91
+ REGULARIZATION: 0.005
92
+ DENOISING:
93
+ META_ARCHITECTURE: GeneralizedUnrolledCNN
94
+ NOISE:
95
+ STD_DEV: *id002
96
+ USE_FULLY_SAMPLED_TARGET: true
97
+ USE_FULLY_SAMPLED_TARGET_EVAL: null
98
+ DEVICE: cuda
99
+ M2R:
100
+ META_ARCHITECTURE: GeneralizedUnrolledCNN
101
+ USE_SUPERVISED_CONSISTENCY: false
102
+ META_ARCHITECTURE: GeneralizedUnrolledCNN
103
+ N2R:
104
+ META_ARCHITECTURE: GeneralizedUnrolledCNN
105
+ USE_SUPERVISED_CONSISTENCY: false
106
+ NM2R:
107
+ META_ARCHITECTURE: GeneralizedUnrolledCNN
108
+ USE_SUPERVISED_CONSISTENCY: false
109
+ NORMALIZER:
110
+ KEYWORDS: []
111
+ NAME: TopMagnitudeNormalizer
112
+ RECON_LOSS:
113
+ NAME: l1
114
+ RENORMALIZE_DATA: true
115
+ SEG:
116
+ ACTIVATION: sigmoid
117
+ CLASSES: []
118
+ INCLUDE_BACKGROUND: false
119
+ SSDU:
120
+ MASKER:
121
+ PARAMS: {}
122
+ META_ARCHITECTURE: GeneralizedUnrolledCNN
123
+ UNET:
124
+ BLOCK_ORDER:
125
+ - conv
126
+ - relu
127
+ - conv
128
+ - relu
129
+ - batchnorm
130
+ - dropout
131
+ CHANNELS: 32
132
+ DROPOUT: 0.0
133
+ IN_CHANNELS: 2
134
+ NORMALIZE: false
135
+ NUM_POOL_LAYERS: 4
136
+ OUT_CHANNELS: 2
137
+ UNROLLED:
138
+ BLOCK_ARCHITECTURE: ResNet
139
+ CONV_BLOCK:
140
+ ACTIVATION: relu
141
+ NORM: none
142
+ NORM_AFFINE: false
143
+ ORDER:
144
+ - norm
145
+ - act
146
+ - drop
147
+ - conv
148
+ DROPOUT: 0.0
149
+ FIX_STEP_SIZE: false
150
+ KERNEL_SIZE:
151
+ - 3
152
+ NUM_EMAPS: 1
153
+ NUM_FEATURES: 128
154
+ NUM_RESBLOCKS: 2
155
+ NUM_UNROLLED_STEPS: 8
156
+ PADDING: ''
157
+ SHARE_WEIGHTS: false
158
+ WEIGHTS: ''
159
+ OUTPUT_DIR: "results://meddlr/tests/basic-cpu"
160
+ SEED: -1
161
+ SOLVER:
162
+ BASE_LR: 0.0001
163
+ BIAS_LR_FACTOR: 1.0
164
+ CHECKPOINT_PERIOD: 200
165
+ GAMMA: 0.1
166
+ GRAD_ACCUM_ITERS: 1
167
+ LR_SCHEDULER_NAME: WarmupMultiStepLR
168
+ MAX_ITER: 1600
169
+ MOMENTUM: 0.9
170
+ OPTIMIZER: Adam
171
+ STEPS:
172
+ - 30000
173
+ TEST_BATCH_SIZE: 2
174
+ TRAIN_BATCH_SIZE: 1
175
+ WARMUP_FACTOR: 0.001
176
+ WARMUP_ITERS: 1000
177
+ WARMUP_METHOD: linear
178
+ WEIGHT_DECAY: 0.0001
179
+ WEIGHT_DECAY_BIAS: 0.0001
180
+ WEIGHT_DECAY_NORM: 0.0
181
+ TEST:
182
+ EVAL_PERIOD: 200
183
+ EXPECTED_RESULTS: []
184
+ FLUSH_PERIOD: 0
185
+ VAL_AS_TEST: true
186
+ VAL_METRICS:
187
+ RECON: []
188
+ TIME_SCALE: iter
189
+ VERSION: 1
190
+ VIS_PERIOD: 20
test-data/test-exps/basic-cpu-orig/events.out.tfevents.1641656281.vigata.1085133.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9fcc5fac0439a0d47714148c49456ee98b16329b1339f8e8e6d4929b579c0b57
3
+ size 62368621
test-data/test-exps/basic-cpu-orig/last_checkpoint ADDED
@@ -0,0 +1 @@
 
 
1
+ model_final.pth
test-data/test-exps/basic-cpu-orig/log.txt ADDED
@@ -0,0 +1,731 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [01/08 07:36:30] meddlr INFO: Running in debug mode
2
+ [01/08 07:36:30] meddlr INFO: Environment info:
3
+ ------------------- ----------------------------------------------------------------------------------------------
4
+ sys.platform linux
5
+ Python 3.7.11 (default, Jul 27 2021, 14:32:16) [GCC 7.5.0]
6
+ numpy 1.20.3
7
+ PyTorch 1.7.1 @/bmrNAS/people/arjun/miniconda3/envs/meddlr_env/lib/python3.7/site-packages/torch
8
+ PyTorch debug build False
9
+ CUDA available False
10
+ Pillow 8.4.0
11
+ torchvision 0.8.2 @/bmrNAS/people/arjun/miniconda3/envs/meddlr_env/lib/python3.7/site-packages/torchvision
12
+ SLURM_JOB_ID slurm not detected
13
+ ------------------- ----------------------------------------------------------------------------------------------
14
+ PyTorch built with:
15
+ - GCC 7.3
16
+ - C++ Version: 201402
17
+ - Intel(R) oneAPI Math Kernel Library Version 2021.4-Product Build 20210904 for Intel(R) 64 architecture applications
18
+ - Intel(R) MKL-DNN v1.6.0 (Git Hash 5ef631a030a6f73131c77892041042805a06064f)
19
+ - OpenMP 201511 (a.k.a. OpenMP 4.5)
20
+ - NNPACK is enabled
21
+ - CPU capability usage: AVX
22
+ - Build settings: BLAS=MKL, BUILD_TYPE=Release, CXX_FLAGS= -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DUSE_VULKAN_WRAPPER -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-sign-compare -Wno-unused-parameter -Wno-unused-variable -Wno-unused-function -Wno-unused-result -Wno-unused-local-typedefs -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, USE_CUDA=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON,
23
+
24
+ [01/08 07:36:30] meddlr INFO: Command line arguments: Namespace(auto_version=False, config_file='../configs/tests/basic.yaml', debug=True, devices=None, eval_only=False, num_gpus=1, opts=['DATALOADER.NUM_WORKERS', '8', 'SOLVER.MAX_ITER', '1600', 'SOLVER.CHECKPOINT_PERIOD', '200', 'TEST.EVAL_PERIOD', '200'], reproducible=False, restart_iter=False, resume=False)
25
+ [01/08 07:36:30] meddlr INFO: Contents of args.config_file=../configs/tests/basic.yaml:
26
+ # Basic testing config
27
+ # Use this for any testing you may want to do in the future.
28
+ # The model will be trained for 60 iterations (not epochs)
29
+ # on the mridata.org 2019 knee dataset.
30
+ MODEL:
31
+ UNROLLED:
32
+ NUM_UNROLLED_STEPS: 8
33
+ NUM_RESBLOCKS: 2
34
+ NUM_FEATURES: 128
35
+ DROPOUT: 0.
36
+ DATASETS:
37
+ TRAIN: ("mridata_knee_2019_train",)
38
+ VAL: ("mridata_knee_2019_val",)
39
+ TEST: ("mridata_knee_2019_test",)
40
+ DATALOADER:
41
+ NUM_WORKERS: 0 # for debugging purposes
42
+ SOLVER:
43
+ TRAIN_BATCH_SIZE: 1
44
+ TEST_BATCH_SIZE: 2
45
+ CHECKPOINT_PERIOD: 20
46
+ MAX_ITER: 80
47
+ TEST:
48
+ EVAL_PERIOD: 40
49
+ VIS_PERIOD: 20
50
+ TIME_SCALE: "iter"
51
+ OUTPUT_DIR: "results://tests/basic"
52
+ VERSION: 1
53
+ [01/08 07:37:52] meddlr INFO: Running in debug mode
54
+ [01/08 07:37:54] meddlr INFO: Environment info:
55
+ ---------------------- ----------------------------------------------------------------------------------------------
56
+ sys.platform linux
57
+ Python 3.7.11 (default, Jul 27 2021, 14:32:16) [GCC 7.5.0]
58
+ numpy 1.20.3
59
+ PyTorch 1.7.1 @/bmrNAS/people/arjun/miniconda3/envs/meddlr_env/lib/python3.7/site-packages/torch
60
+ PyTorch debug build False
61
+ CUDA available True
62
+ GPU 0 GeForce RTX 2080 Ti
63
+ CUDA_HOME /usr/local/cuda
64
+ NVCC Cuda compilation tools, release 9.0, V9.0.176
65
+ Pillow 8.4.0
66
+ torchvision 0.8.2 @/bmrNAS/people/arjun/miniconda3/envs/meddlr_env/lib/python3.7/site-packages/torchvision
67
+ torchvision arch flags sm_35, sm_50, sm_60, sm_70, sm_75
68
+ SLURM_JOB_ID 29543
69
+ ---------------------- ----------------------------------------------------------------------------------------------
70
+ PyTorch built with:
71
+ - GCC 7.3
72
+ - C++ Version: 201402
73
+ - Intel(R) oneAPI Math Kernel Library Version 2021.4-Product Build 20210904 for Intel(R) 64 architecture applications
74
+ - Intel(R) MKL-DNN v1.6.0 (Git Hash 5ef631a030a6f73131c77892041042805a06064f)
75
+ - OpenMP 201511 (a.k.a. OpenMP 4.5)
76
+ - NNPACK is enabled
77
+ - CPU capability usage: AVX2
78
+ - CUDA Runtime 10.2
79
+ - NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_37,code=compute_37
80
+ - CuDNN 7.6.5
81
+ - Magma 2.5.2
82
+ - Build settings: BLAS=MKL, BUILD_TYPE=Release, CXX_FLAGS= -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DUSE_VULKAN_WRAPPER -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-sign-compare -Wno-unused-parameter -Wno-unused-variable -Wno-unused-function -Wno-unused-result -Wno-unused-local-typedefs -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, USE_CUDA=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON,
83
+
84
+ [01/08 07:37:54] meddlr INFO: Command line arguments: Namespace(auto_version=False, config_file='../configs/tests/basic.yaml', debug=True, devices=None, eval_only=False, num_gpus=1, opts=['DATALOADER.NUM_WORKERS', '8', 'SOLVER.MAX_ITER', '1600', 'SOLVER.CHECKPOINT_PERIOD', '200', 'TEST.EVAL_PERIOD', '200'], reproducible=False, restart_iter=False, resume=False)
85
+ [01/08 07:37:54] meddlr INFO: Contents of args.config_file=../configs/tests/basic.yaml:
86
+ # Basic testing config
87
+ # Use this for any testing you may want to do in the future.
88
+ # The model will be trained for 60 iterations (not epochs)
89
+ # on the mridata.org 2019 knee dataset.
90
+ MODEL:
91
+ UNROLLED:
92
+ NUM_UNROLLED_STEPS: 8
93
+ NUM_RESBLOCKS: 2
94
+ NUM_FEATURES: 128
95
+ DROPOUT: 0.
96
+ DATASETS:
97
+ TRAIN: ("mridata_knee_2019_train",)
98
+ VAL: ("mridata_knee_2019_val",)
99
+ TEST: ("mridata_knee_2019_test",)
100
+ DATALOADER:
101
+ NUM_WORKERS: 0 # for debugging purposes
102
+ SOLVER:
103
+ TRAIN_BATCH_SIZE: 1
104
+ TEST_BATCH_SIZE: 2
105
+ CHECKPOINT_PERIOD: 20
106
+ MAX_ITER: 80
107
+ TEST:
108
+ EVAL_PERIOD: 40
109
+ VIS_PERIOD: 20
110
+ TIME_SCALE: "iter"
111
+ OUTPUT_DIR: "results://tests/basic"
112
+ VERSION: 1
113
+ [01/08 07:37:54] meddlr INFO: Running with full config:
114
+ AUG_TEST:
115
+ UNDERSAMPLE:
116
+ ACCELERATIONS: (6,)
117
+ AUG_TRAIN:
118
+ MOTION_P: 0.2
119
+ MRI_RECON:
120
+ AUG_SENSITIVITY_MAPS: True
121
+ SCHEDULER_P:
122
+ IGNORE: False
123
+ TRANSFORMS: ()
124
+ NOISE_P: 0.2
125
+ UNDERSAMPLE:
126
+ ACCELERATIONS: (6,)
127
+ CALIBRATION_SIZE: 20
128
+ CENTER_FRACTIONS: ()
129
+ MAX_ATTEMPTS: 30
130
+ NAME: PoissonDiskMaskFunc
131
+ USE_MOTION: False
132
+ USE_NOISE: False
133
+ CUDNN_BENCHMARK: False
134
+ DATALOADER:
135
+ ALT_SAMPLER:
136
+ PERIOD_SUPERVISED: 1
137
+ PERIOD_UNSUPERVISED: 1
138
+ DATA_KEYS: ()
139
+ DROP_LAST: True
140
+ FILTER:
141
+ BY: ()
142
+ GROUP_SAMPLER:
143
+ AS_BATCH_SAMPLER: False
144
+ BATCH_BY: ()
145
+ NUM_WORKERS: 8
146
+ PREFETCH_FACTOR: 2
147
+ SAMPLER_TRAIN:
148
+ SUBSAMPLE_TRAIN:
149
+ NUM_TOTAL: -1
150
+ NUM_TOTAL_BY_GROUP: ()
151
+ NUM_UNDERSAMPLED: 0
152
+ NUM_VAL: -1
153
+ NUM_VAL_BY_GROUP: ()
154
+ SEED: 1000
155
+ DATASETS:
156
+ TEST: ('mridata_knee_2019_test',)
157
+ TRAIN: ('mridata_knee_2019_train',)
158
+ VAL: ('mridata_knee_2019_val',)
159
+ DESCRIPTION:
160
+ BRIEF:
161
+ ENTITY_NAME: ss_recon
162
+ EXP_NAME:
163
+ PROJECT_NAME: ss_recon
164
+ TAGS: ()
165
+ MODEL:
166
+ A2R:
167
+ META_ARCHITECTURE: GeneralizedUnrolledCNN
168
+ USE_SUPERVISED_CONSISTENCY: False
169
+ CONSISTENCY:
170
+ AUG:
171
+ MOTION:
172
+ RANGE: (0.2, 0.5)
173
+ SCHEDULER:
174
+ WARMUP_ITERS: 0
175
+ WARMUP_METHOD:
176
+ MRI_RECON:
177
+ AUG_SENSITIVITY_MAPS: True
178
+ SCHEDULER_P:
179
+ IGNORE: False
180
+ TRANSFORMS: ()
181
+ NOISE:
182
+ MASK:
183
+ RHO: 1.0
184
+ SCHEDULER:
185
+ WARMUP_ITERS: 0
186
+ WARMUP_METHOD:
187
+ STD_DEV: (1,)
188
+ LATENT_LOSS_NAME: mag_l1
189
+ LATENT_LOSS_WEIGHT: 0.1
190
+ LOSS_NAME: l1
191
+ LOSS_WEIGHT: 0.1
192
+ NUM_LATENT_LAYERS: 1
193
+ USE_CONSISTENCY: True
194
+ USE_LATENT: False
195
+ CS:
196
+ MAX_ITER: 200
197
+ REGULARIZATION: 0.005
198
+ DENOISING:
199
+ META_ARCHITECTURE: GeneralizedUnrolledCNN
200
+ NOISE:
201
+ STD_DEV: (1,)
202
+ USE_FULLY_SAMPLED_TARGET: True
203
+ USE_FULLY_SAMPLED_TARGET_EVAL: None
204
+ DEVICE: cuda
205
+ M2R:
206
+ META_ARCHITECTURE: GeneralizedUnrolledCNN
207
+ USE_SUPERVISED_CONSISTENCY: False
208
+ META_ARCHITECTURE: GeneralizedUnrolledCNN
209
+ N2R:
210
+ META_ARCHITECTURE: GeneralizedUnrolledCNN
211
+ USE_SUPERVISED_CONSISTENCY: False
212
+ NM2R:
213
+ META_ARCHITECTURE: GeneralizedUnrolledCNN
214
+ USE_SUPERVISED_CONSISTENCY: False
215
+ NORMALIZER:
216
+ KEYWORDS: ()
217
+ NAME: TopMagnitudeNormalizer
218
+ RECON_LOSS:
219
+ NAME: l1
220
+ RENORMALIZE_DATA: True
221
+ SEG:
222
+ ACTIVATION: sigmoid
223
+ CLASSES: ()
224
+ INCLUDE_BACKGROUND: False
225
+ SSDU:
226
+ MASKER:
227
+ PARAMS:
228
+
229
+ META_ARCHITECTURE: GeneralizedUnrolledCNN
230
+ UNET:
231
+ BLOCK_ORDER: ('conv', 'relu', 'conv', 'relu', 'batchnorm', 'dropout')
232
+ CHANNELS: 32
233
+ DROPOUT: 0.0
234
+ IN_CHANNELS: 2
235
+ NORMALIZE: False
236
+ NUM_POOL_LAYERS: 4
237
+ OUT_CHANNELS: 2
238
+ UNROLLED:
239
+ BLOCK_ARCHITECTURE: ResNet
240
+ CONV_BLOCK:
241
+ ACTIVATION: relu
242
+ NORM: none
243
+ NORM_AFFINE: False
244
+ ORDER: ('norm', 'act', 'drop', 'conv')
245
+ DROPOUT: 0.0
246
+ FIX_STEP_SIZE: False
247
+ KERNEL_SIZE: (3,)
248
+ NUM_EMAPS: 1
249
+ NUM_FEATURES: 128
250
+ NUM_RESBLOCKS: 2
251
+ NUM_UNROLLED_STEPS: 8
252
+ PADDING:
253
+ SHARE_WEIGHTS: False
254
+ WEIGHTS:
255
+ OUTPUT_DIR: /bmrNAS/people/arjun/results/meddlr/tests/basic
256
+ SEED: -1
257
+ SOLVER:
258
+ BASE_LR: 0.0001
259
+ BIAS_LR_FACTOR: 1.0
260
+ CHECKPOINT_PERIOD: 200
261
+ GAMMA: 0.1
262
+ GRAD_ACCUM_ITERS: 1
263
+ LR_SCHEDULER_NAME: WarmupMultiStepLR
264
+ MAX_ITER: 1600
265
+ MOMENTUM: 0.9
266
+ OPTIMIZER: Adam
267
+ STEPS: (30000,)
268
+ TEST_BATCH_SIZE: 2
269
+ TRAIN_BATCH_SIZE: 1
270
+ WARMUP_FACTOR: 0.001
271
+ WARMUP_ITERS: 1000
272
+ WARMUP_METHOD: linear
273
+ WEIGHT_DECAY: 0.0001
274
+ WEIGHT_DECAY_BIAS: 0.0001
275
+ WEIGHT_DECAY_NORM: 0.0
276
+ TEST:
277
+ EVAL_PERIOD: 200
278
+ EXPECTED_RESULTS: []
279
+ FLUSH_PERIOD: 0
280
+ VAL_AS_TEST: True
281
+ VAL_METRICS:
282
+ RECON: ()
283
+ TIME_SCALE: iter
284
+ VERSION: 1
285
+ VIS_PERIOD: 20
286
+ [01/08 07:37:54] meddlr INFO: Full config saved to /bmrNAS/people/arjun/results/meddlr/tests/basic/config.yaml
287
+ [01/08 07:37:54] mr.utils.env INFO: Using a generated random seed 55308770
288
+ [01/08 07:37:54] mr.data.datasets.register_mrco INFO: Loading /bmrNAS/people/arjun/code/meddlr/annotations/mridata_knee_2019/train.json takes 0.04 seconds
289
+ [01/08 07:37:54] mr.data.build INFO: Dropped 0 scans. 14 scans remaining
290
+ [01/08 07:37:54] mr.data.build INFO: Dropped references for 0/14 scans. 14 scans with reference remaining
291
+ [01/08 07:37:54] meddlr INFO: Calculated 4480 iterations per epoch
292
+ [01/08 07:37:54] mr.data.datasets.register_mrco INFO: Loading /bmrNAS/people/arjun/code/meddlr/annotations/mridata_knee_2019/train.json takes 0.00 seconds
293
+ [01/08 07:37:54] mr.data.build INFO: Dropped 0 scans. 14 scans remaining
294
+ [01/08 07:37:54] mr.data.build INFO: Dropped references for 0/14 scans. 14 scans with reference remaining
295
+ [01/08 07:38:01] fvcore.common.checkpoint INFO: No checkpoint found. Initializing model from scratch
296
+ [01/08 07:38:01] mr.engine.train_loop INFO: Starting training from iteration 0
297
+ [01/08 07:38:13] mr.utils.events INFO: eta: 0:05:59 iter: 19 loss: 100222.734 total_loss: 100222.734 time: 0.2279 data_time: 0.2790 lr: 0.000002 max_mem: 2468M
298
+ [01/08 07:38:18] mr.utils.events INFO: eta: 0:05:55 iter: 39 loss: 31516.157 total_loss: 31516.157 time: 0.2280 data_time: 0.0001 lr: 0.000004 max_mem: 2468M
299
+ [01/08 07:38:23] mr.utils.events INFO: eta: 0:05:51 iter: 59 loss: 27504.994 total_loss: 27504.994 time: 0.2283 data_time: 0.0001 lr: 0.000006 max_mem: 2468M
300
+ [01/08 07:38:28] mr.utils.events INFO: eta: 0:05:47 iter: 79 loss: 24592.978 total_loss: 24592.978 time: 0.2288 data_time: 0.0001 lr: 0.000008 max_mem: 2468M
301
+ [01/08 07:38:34] mr.utils.events INFO: eta: 0:05:43 iter: 99 loss: 24272.967 total_loss: 24272.967 time: 0.2399 data_time: 0.0528 lr: 0.000010 max_mem: 2468M
302
+ [01/08 07:38:39] mr.utils.events INFO: eta: 0:05:39 iter: 119 loss: 21447.893 total_loss: 21447.893 time: 0.2385 data_time: 0.0001 lr: 0.000012 max_mem: 2468M
303
+ [01/08 07:38:44] mr.utils.events INFO: eta: 0:05:35 iter: 139 loss: 21284.981 total_loss: 21284.981 time: 0.2376 data_time: 0.0001 lr: 0.000014 max_mem: 2468M
304
+ [01/08 07:38:49] mr.utils.events INFO: eta: 0:05:31 iter: 159 loss: 22184.024 total_loss: 22184.024 time: 0.2369 data_time: 0.0001 lr: 0.000016 max_mem: 2468M
305
+ [01/08 07:38:55] mr.utils.events INFO: eta: 0:05:27 iter: 179 loss: 20008.485 total_loss: 20008.485 time: 0.2365 data_time: 0.0001 lr: 0.000018 max_mem: 2468M
306
+ [01/08 07:39:00] fvcore.common.checkpoint INFO: Saving checkpoint to /bmrNAS/people/arjun/results/meddlr/tests/basic/model_0000199.pth
307
+ [01/08 07:39:01] mr.data.datasets.register_mrco INFO: Loading /bmrNAS/people/arjun/code/meddlr/annotations/mridata_knee_2019/val.json takes 0.07 seconds
308
+ [01/08 07:39:01] mr.data.build INFO: Dropped 0 scans. 2 scans remaining
309
+ [01/08 07:39:01] mr.data.build INFO: Dropped references for 0/2 scans. 2 scans with reference remaining
310
+ [01/08 07:39:01] mr.evaluation.evaluator INFO: Start inference on 320 batches
311
+ [01/08 07:39:05] mr.evaluation.evaluator INFO: Inference done 11/320. 0.0258 s / img. ETA=0:00:46
312
+ [01/08 07:39:10] mr.evaluation.evaluator INFO: Inference done 44/320. 0.0238 s / img. ETA=0:00:41
313
+ [01/08 07:39:15] mr.evaluation.evaluator INFO: Inference done 77/320. 0.0229 s / img. ETA=0:00:36
314
+ [01/08 07:39:20] mr.evaluation.evaluator INFO: Inference done 110/320. 0.0226 s / img. ETA=0:00:31
315
+ [01/08 07:39:25] mr.evaluation.evaluator INFO: Inference done 143/320. 0.0224 s / img. ETA=0:00:26
316
+ [01/08 07:39:30] mr.evaluation.evaluator INFO: Inference done 176/320. 0.0223 s / img. ETA=0:00:21
317
+ [01/08 07:39:35] mr.evaluation.evaluator INFO: Inference done 209/320. 0.0222 s / img. ETA=0:00:16
318
+ [01/08 07:39:40] mr.evaluation.evaluator INFO: Inference done 237/320. 0.0221 s / img. ETA=0:00:12
319
+ [01/08 07:39:45] mr.evaluation.evaluator INFO: Inference done 270/320. 0.0221 s / img. ETA=0:00:07
320
+ [01/08 07:39:50] mr.evaluation.evaluator INFO: Inference done 303/320. 0.0220 s / img. ETA=0:00:02
321
+ [01/08 07:39:53] mr.evaluation.evaluator INFO: Total inference time: 0:00:48.855011 (0.155095 s / batch on 1 devices)
322
+ [01/08 07:39:53] mr.evaluation.evaluator INFO: Total inference pure compute time: 0:00:06 (0.021862 s / batch on 1 devices)
323
+ [01/08 07:40:03] mr.evaluation.scan_evaluator INFO: Structuring slices into volumes...
324
+ [01/08 07:40:03] mr.evaluation.scan_evaluator INFO: Structuring slices into volumes...
325
+ [01/08 07:40:06] mr.evaluation.recon_evaluation INFO: [ReconEvaluator] Slice metrics summary:
326
+ channel_0
327
+ --------------- --------------
328
+ val_nrmse 0.211 (0.055)
329
+ val_nrmse_mag 0.140 (0.033)
330
+ val_psnr 31.509 (2.961)
331
+ val_psnr_mag 35.018 (2.864)
332
+ val_ssim (Wang) 0.831 (0.090)
333
+
334
+ [01/08 07:40:06] mr.evaluation.recon_evaluation INFO: [ReconEvaluator] Scan metrics summary:
335
+ channel_0
336
+ -------------------- --------------
337
+ val_nrmse_mag_scan 0.131 (0.007)
338
+ val_nrmse_scan 0.195 (0.012)
339
+ val_psnr_mag_scan 42.912 (0.363)
340
+ val_psnr_scan 39.450 (0.290)
341
+ val_ssim (Wang)_scan 0.957 (0.003)
342
+
343
+ [01/08 07:40:06] mr.evaluation.evaluator INFO: Evaluation Time: 13.612028 s
344
+ [01/08 07:40:06] mr.engine.trainer INFO: Evaluation results for mridata_knee_2019_val in csv format:
345
+ [01/08 07:40:06] mr.evaluation.testing INFO: copypaste: val_nrmse,val_nrmse_mag,val_psnr,val_psnr_mag,val_ssim (Wang),val_nrmse_mag_scan,val_nrmse_scan,val_psnr_mag_scan,val_psnr_scan,val_ssim (Wang)_scan
346
+ [01/08 07:40:06] mr.evaluation.testing INFO: copypaste: 0.2112,0.1404,31.5090,35.0178,0.8314,0.1310,0.1952,42.9119,39.4501,0.9571
347
+ [01/08 07:40:06] mr.evaluation.testing INFO: Metrics (comma delimited):
348
+ val_nrmse,val_nrmse_mag,val_psnr,val_psnr_mag,val_ssim (Wang),val_nrmse_mag_scan,val_nrmse_scan,val_psnr_mag_scan,val_psnr_scan,val_ssim (Wang)_scan
349
+ 0.2112,0.1404,31.5090,35.0178,0.8314,0.1310,0.1952,42.9119,39.4501,0.9571
350
+ [01/08 07:40:06] mr.utils.events INFO: eta: 0:13:01 iter: 199 loss: 18439.461 total_loss: 18439.461 time: 0.2363 data_time: 0.0001 lr: 0.000020 max_mem: 4234M
351
+ [01/08 07:40:12] mr.utils.events INFO: eta: 0:12:57 iter: 219 loss: 17119.530 total_loss: 17119.530 time: 0.2367 data_time: 0.0001 lr: 0.000022 max_mem: 4234M
352
+ [01/08 07:40:17] mr.utils.events INFO: eta: 0:12:53 iter: 239 loss: 16810.184 total_loss: 16810.184 time: 0.2394 data_time: 0.0279 lr: 0.000024 max_mem: 4234M
353
+ [01/08 07:40:22] mr.utils.events INFO: eta: 0:12:49 iter: 259 loss: 15697.525 total_loss: 15697.525 time: 0.2395 data_time: 0.0001 lr: 0.000026 max_mem: 4234M
354
+ [01/08 07:40:28] mr.utils.events INFO: eta: 0:12:45 iter: 279 loss: 16743.501 total_loss: 16743.501 time: 0.2393 data_time: 0.0001 lr: 0.000028 max_mem: 4234M
355
+ [01/08 07:40:33] mr.utils.events INFO: eta: 0:12:40 iter: 299 loss: 18045.708 total_loss: 18045.708 time: 0.2392 data_time: 0.0013 lr: 0.000030 max_mem: 4234M
356
+ [01/08 07:40:39] mr.utils.events INFO: eta: 0:12:36 iter: 319 loss: 16170.239 total_loss: 16170.239 time: 0.2392 data_time: 0.0001 lr: 0.000032 max_mem: 4234M
357
+ [01/08 07:40:45] mr.utils.events INFO: eta: 0:12:32 iter: 339 loss: 16581.456 total_loss: 16581.456 time: 0.2412 data_time: 0.0363 lr: 0.000034 max_mem: 4234M
358
+ [01/08 07:40:50] mr.utils.events INFO: eta: 0:12:28 iter: 359 loss: 17071.639 total_loss: 17071.639 time: 0.2411 data_time: 0.0001 lr: 0.000036 max_mem: 4234M
359
+ [01/08 07:40:56] mr.utils.events INFO: eta: 0:12:25 iter: 379 loss: 16226.621 total_loss: 16226.621 time: 0.2411 data_time: 0.0001 lr: 0.000038 max_mem: 4234M
360
+ [01/08 07:41:01] fvcore.common.checkpoint INFO: Saving checkpoint to /bmrNAS/people/arjun/results/meddlr/tests/basic/model_0000399.pth
361
+ [01/08 07:41:02] mr.data.datasets.register_mrco INFO: Loading /bmrNAS/people/arjun/code/meddlr/annotations/mridata_knee_2019/val.json takes 0.00 seconds
362
+ [01/08 07:41:02] mr.data.build INFO: Dropped 0 scans. 2 scans remaining
363
+ [01/08 07:41:02] mr.data.build INFO: Dropped references for 0/2 scans. 2 scans with reference remaining
364
+ [01/08 07:41:02] mr.evaluation.evaluator INFO: Start inference on 320 batches
365
+ [01/08 07:41:06] mr.evaluation.evaluator INFO: Inference done 11/320. 0.0223 s / img. ETA=0:00:47
366
+ [01/08 07:41:11] mr.evaluation.evaluator INFO: Inference done 44/320. 0.0222 s / img. ETA=0:00:42
367
+ [01/08 07:41:16] mr.evaluation.evaluator INFO: Inference done 77/320. 0.0221 s / img. ETA=0:00:37
368
+ [01/08 07:41:21] mr.evaluation.evaluator INFO: Inference done 110/320. 0.0221 s / img. ETA=0:00:32
369
+ [01/08 07:41:27] mr.evaluation.evaluator INFO: Inference done 143/320. 0.0221 s / img. ETA=0:00:27
370
+ [01/08 07:41:32] mr.evaluation.evaluator INFO: Inference done 176/320. 0.0221 s / img. ETA=0:00:22
371
+ [01/08 07:41:37] mr.evaluation.evaluator INFO: Inference done 209/320. 0.0221 s / img. ETA=0:00:17
372
+ [01/08 07:41:42] mr.evaluation.evaluator INFO: Inference done 242/320. 0.0221 s / img. ETA=0:00:12
373
+ [01/08 07:41:47] mr.evaluation.evaluator INFO: Inference done 275/320. 0.0221 s / img. ETA=0:00:06
374
+ [01/08 07:41:52] mr.evaluation.evaluator INFO: Inference done 308/320. 0.0221 s / img. ETA=0:00:01
375
+ [01/08 07:41:54] mr.evaluation.evaluator INFO: Total inference time: 0:00:49.053359 (0.155725 s / batch on 1 devices)
376
+ [01/08 07:41:54] mr.evaluation.evaluator INFO: Total inference pure compute time: 0:00:06 (0.021976 s / batch on 1 devices)
377
+ [01/08 07:42:04] mr.evaluation.scan_evaluator INFO: Structuring slices into volumes...
378
+ [01/08 07:42:04] mr.evaluation.scan_evaluator INFO: Structuring slices into volumes...
379
+ [01/08 07:42:07] mr.evaluation.recon_evaluation INFO: [ReconEvaluator] Slice metrics summary:
380
+ channel_0
381
+ --------------- --------------
382
+ val_nrmse 0.176 (0.045)
383
+ val_nrmse_mag 0.122 (0.030)
384
+ val_psnr 33.094 (3.019)
385
+ val_psnr_mag 36.272 (3.018)
386
+ val_ssim (Wang) 0.860 (0.080)
387
+
388
+ [01/08 07:42:07] mr.evaluation.recon_evaluation INFO: [ReconEvaluator] Scan metrics summary:
389
+ channel_0
390
+ -------------------- --------------
391
+ val_nrmse_mag_scan 0.113 (0.005)
392
+ val_nrmse_scan 0.163 (0.006)
393
+ val_psnr_mag_scan 44.208 (0.394)
394
+ val_psnr_scan 41.032 (0.507)
395
+ val_ssim (Wang)_scan 0.963 (0.002)
396
+
397
+ [01/08 07:42:07] mr.evaluation.evaluator INFO: Evaluation Time: 13.187915 s
398
+ [01/08 07:42:07] mr.engine.trainer INFO: Evaluation results for mridata_knee_2019_val in csv format:
399
+ [01/08 07:42:07] mr.evaluation.testing INFO: copypaste: val_nrmse,val_nrmse_mag,val_psnr,val_psnr_mag,val_ssim (Wang),val_nrmse_mag_scan,val_nrmse_scan,val_psnr_mag_scan,val_psnr_scan,val_ssim (Wang)_scan
400
+ [01/08 07:42:07] mr.evaluation.testing INFO: copypaste: 0.1758,0.1218,33.0937,36.2715,0.8602,0.1128,0.1626,44.2078,41.0316,0.9630
401
+ [01/08 07:42:07] mr.evaluation.testing INFO: Metrics (comma delimited):
402
+ val_nrmse,val_nrmse_mag,val_psnr,val_psnr_mag,val_ssim (Wang),val_nrmse_mag_scan,val_nrmse_scan,val_psnr_mag_scan,val_psnr_scan,val_ssim (Wang)_scan
403
+ 0.1758,0.1218,33.0937,36.2715,0.8602,0.1128,0.1626,44.2078,41.0316,0.9630
404
+ [01/08 07:42:07] mr.utils.events INFO: eta: 0:11:15 iter: 399 loss: 14768.049 total_loss: 14768.049 time: 0.2410 data_time: 0.0001 lr: 0.000040 max_mem: 4235M
405
+ [01/08 07:42:13] mr.utils.events INFO: eta: 0:11:11 iter: 419 loss: 14830.163 total_loss: 14830.163 time: 0.2410 data_time: 0.0001 lr: 0.000042 max_mem: 4235M
406
+ [01/08 07:42:18] mr.utils.events INFO: eta: 0:11:06 iter: 439 loss: 16323.925 total_loss: 16323.925 time: 0.2410 data_time: 0.0001 lr: 0.000044 max_mem: 4235M
407
+ [01/08 07:42:23] mr.utils.events INFO: eta: 0:11:02 iter: 459 loss: 14716.628 total_loss: 14716.628 time: 0.2409 data_time: 0.0001 lr: 0.000046 max_mem: 4235M
408
+ [01/08 07:42:29] mr.utils.events INFO: eta: 0:10:57 iter: 479 loss: 15069.688 total_loss: 15069.688 time: 0.2409 data_time: 0.0001 lr: 0.000048 max_mem: 4235M
409
+ [01/08 07:42:34] mr.utils.events INFO: eta: 0:10:53 iter: 499 loss: 14391.693 total_loss: 14391.693 time: 0.2409 data_time: 0.0001 lr: 0.000050 max_mem: 4235M
410
+ [01/08 07:42:39] mr.utils.events INFO: eta: 0:10:48 iter: 519 loss: 14284.784 total_loss: 14284.784 time: 0.2409 data_time: 0.0001 lr: 0.000052 max_mem: 4235M
411
+ [01/08 07:42:45] mr.utils.events INFO: eta: 0:10:44 iter: 539 loss: 15812.837 total_loss: 15812.837 time: 0.2409 data_time: 0.0001 lr: 0.000054 max_mem: 4235M
412
+ [01/08 07:42:51] mr.utils.events INFO: eta: 0:10:39 iter: 559 loss: 15930.277 total_loss: 15930.277 time: 0.2409 data_time: 0.0001 lr: 0.000056 max_mem: 4235M
413
+ [01/08 07:43:02] mr.utils.events INFO: eta: 0:10:34 iter: 579 loss: 15495.331 total_loss: 15495.331 time: 0.2410 data_time: 0.0001 lr: 0.000058 max_mem: 4235M
414
+ [01/08 07:43:07] fvcore.common.checkpoint INFO: Saving checkpoint to /bmrNAS/people/arjun/results/meddlr/tests/basic/model_0000599.pth
415
+ [01/08 07:43:08] mr.data.datasets.register_mrco INFO: Loading /bmrNAS/people/arjun/code/meddlr/annotations/mridata_knee_2019/val.json takes 0.00 seconds
416
+ [01/08 07:43:08] mr.data.build INFO: Dropped 0 scans. 2 scans remaining
417
+ [01/08 07:43:08] mr.data.build INFO: Dropped references for 0/2 scans. 2 scans with reference remaining
418
+ [01/08 07:43:08] mr.evaluation.evaluator INFO: Start inference on 320 batches
419
+ [01/08 07:43:11] mr.evaluation.evaluator INFO: Inference done 11/320. 0.0221 s / img. ETA=0:00:48
420
+ [01/08 07:43:16] mr.evaluation.evaluator INFO: Inference done 44/320. 0.0221 s / img. ETA=0:00:42
421
+ [01/08 07:43:21] mr.evaluation.evaluator INFO: Inference done 77/320. 0.0222 s / img. ETA=0:00:37
422
+ [01/08 07:43:26] mr.evaluation.evaluator INFO: Inference done 109/320. 0.0222 s / img. ETA=0:00:32
423
+ [01/08 07:43:31] mr.evaluation.evaluator INFO: Inference done 141/320. 0.0222 s / img. ETA=0:00:27
424
+ [01/08 07:43:37] mr.evaluation.evaluator INFO: Inference done 173/320. 0.0222 s / img. ETA=0:00:22
425
+ [01/08 07:43:42] mr.evaluation.evaluator INFO: Inference done 205/320. 0.0222 s / img. ETA=0:00:17
426
+ [01/08 07:43:47] mr.evaluation.evaluator INFO: Inference done 237/320. 0.0222 s / img. ETA=0:00:12
427
+ [01/08 07:43:52] mr.evaluation.evaluator INFO: Inference done 269/320. 0.0222 s / img. ETA=0:00:07
428
+ [01/08 07:43:57] mr.evaluation.evaluator INFO: Inference done 301/320. 0.0222 s / img. ETA=0:00:02
429
+ [01/08 07:44:00] mr.evaluation.evaluator INFO: Total inference time: 0:00:49.342107 (0.156642 s / batch on 1 devices)
430
+ [01/08 07:44:00] mr.evaluation.evaluator INFO: Total inference pure compute time: 0:00:06 (0.022043 s / batch on 1 devices)
431
+ [01/08 07:44:09] mr.evaluation.scan_evaluator INFO: Structuring slices into volumes...
432
+ [01/08 07:44:09] mr.evaluation.scan_evaluator INFO: Structuring slices into volumes...
433
+ [01/08 07:44:13] mr.evaluation.recon_evaluation INFO: [ReconEvaluator] Slice metrics summary:
434
+ channel_0
435
+ --------------- --------------
436
+ val_nrmse 0.217 (0.036)
437
+ val_nrmse_mag 0.169 (0.023)
438
+ val_psnr 31.138 (2.830)
439
+ val_psnr_mag 33.292 (2.814)
440
+ val_ssim (Wang) 0.867 (0.077)
441
+
442
+ [01/08 07:44:13] mr.evaluation.recon_evaluation INFO: [ReconEvaluator] Scan metrics summary:
443
+ channel_0
444
+ -------------------- --------------
445
+ val_nrmse_mag_scan 0.162 (0.003)
446
+ val_nrmse_scan 0.207 (0.002)
447
+ val_psnr_mag_scan 41.054 (0.641)
448
+ val_psnr_scan 38.946 (0.736)
449
+ val_ssim (Wang)_scan 0.962 (0.000)
450
+
451
+ [01/08 07:44:13] mr.evaluation.evaluator INFO: Evaluation Time: 13.194743 s
452
+ [01/08 07:44:13] mr.engine.trainer INFO: Evaluation results for mridata_knee_2019_val in csv format:
453
+ [01/08 07:44:13] mr.evaluation.testing INFO: copypaste: val_nrmse,val_nrmse_mag,val_psnr,val_psnr_mag,val_ssim (Wang),val_nrmse_mag_scan,val_nrmse_scan,val_psnr_mag_scan,val_psnr_scan,val_ssim (Wang)_scan
454
+ [01/08 07:44:13] mr.evaluation.testing INFO: copypaste: 0.2174,0.1691,31.1379,33.2924,0.8669,0.1621,0.2066,41.0542,38.9462,0.9623
455
+ [01/08 07:44:13] mr.evaluation.testing INFO: Metrics (comma delimited):
456
+ val_nrmse,val_nrmse_mag,val_psnr,val_psnr_mag,val_ssim (Wang),val_nrmse_mag_scan,val_nrmse_scan,val_psnr_mag_scan,val_psnr_scan,val_ssim (Wang)_scan
457
+ 0.2174,0.1691,31.1379,33.2924,0.8669,0.1621,0.2066,41.0542,38.9462,0.9623
458
+ [01/08 07:44:13] mr.utils.events INFO: eta: 0:09:24 iter: 599 loss: 13945.590 total_loss: 13945.590 time: 0.2409 data_time: 0.0001 lr: 0.000060 max_mem: 4237M
459
+ [01/08 07:44:18] mr.utils.events INFO: eta: 0:09:19 iter: 619 loss: 16922.678 total_loss: 16922.678 time: 0.2410 data_time: 0.0001 lr: 0.000062 max_mem: 4237M
460
+ [01/08 07:44:23] mr.utils.events INFO: eta: 0:09:15 iter: 639 loss: 14901.438 total_loss: 14901.438 time: 0.2410 data_time: 0.0001 lr: 0.000064 max_mem: 4237M
461
+ [01/08 07:44:28] mr.utils.events INFO: eta: 0:09:10 iter: 659 loss: 14073.586 total_loss: 14073.586 time: 0.2410 data_time: 0.0001 lr: 0.000066 max_mem: 4237M
462
+ [01/08 07:44:34] mr.utils.events INFO: eta: 0:09:06 iter: 679 loss: 16618.619 total_loss: 16618.619 time: 0.2410 data_time: 0.0001 lr: 0.000068 max_mem: 4237M
463
+ [01/08 07:44:39] mr.utils.events INFO: eta: 0:09:01 iter: 699 loss: 17848.932 total_loss: 17848.932 time: 0.2410 data_time: 0.0001 lr: 0.000070 max_mem: 4237M
464
+ [01/08 07:44:44] mr.utils.events INFO: eta: 0:08:56 iter: 719 loss: 16070.655 total_loss: 16070.655 time: 0.2410 data_time: 0.0001 lr: 0.000072 max_mem: 4237M
465
+ [01/08 07:44:49] mr.utils.events INFO: eta: 0:08:52 iter: 739 loss: 16163.839 total_loss: 16163.839 time: 0.2411 data_time: 0.0001 lr: 0.000074 max_mem: 4237M
466
+ [01/08 07:44:54] mr.utils.events INFO: eta: 0:08:47 iter: 759 loss: 15517.578 total_loss: 15517.578 time: 0.2411 data_time: 0.0001 lr: 0.000076 max_mem: 4237M
467
+ [01/08 07:45:00] mr.utils.events INFO: eta: 0:08:42 iter: 779 loss: 15658.616 total_loss: 15658.616 time: 0.2411 data_time: 0.0001 lr: 0.000078 max_mem: 4237M
468
+ [01/08 07:45:05] fvcore.common.checkpoint INFO: Saving checkpoint to /bmrNAS/people/arjun/results/meddlr/tests/basic/model_0000799.pth
469
+ [01/08 07:45:05] mr.data.datasets.register_mrco INFO: Loading /bmrNAS/people/arjun/code/meddlr/annotations/mridata_knee_2019/val.json takes 0.00 seconds
470
+ [01/08 07:45:05] mr.data.build INFO: Dropped 0 scans. 2 scans remaining
471
+ [01/08 07:45:05] mr.data.build INFO: Dropped references for 0/2 scans. 2 scans with reference remaining
472
+ [01/08 07:45:05] mr.evaluation.evaluator INFO: Start inference on 320 batches
473
+ [01/08 07:45:09] mr.evaluation.evaluator INFO: Inference done 11/320. 0.0251 s / img. ETA=0:00:48
474
+ [01/08 07:45:14] mr.evaluation.evaluator INFO: Inference done 43/320. 0.0227 s / img. ETA=0:00:43
475
+ [01/08 07:45:19] mr.evaluation.evaluator INFO: Inference done 75/320. 0.0224 s / img. ETA=0:00:38
476
+ [01/08 07:45:24] mr.evaluation.evaluator INFO: Inference done 107/320. 0.0224 s / img. ETA=0:00:33
477
+ [01/08 07:45:29] mr.evaluation.evaluator INFO: Inference done 139/320. 0.0223 s / img. ETA=0:00:28
478
+ [01/08 07:45:34] mr.evaluation.evaluator INFO: Inference done 171/320. 0.0223 s / img. ETA=0:00:23
479
+ [01/08 07:45:39] mr.evaluation.evaluator INFO: Inference done 203/320. 0.0223 s / img. ETA=0:00:18
480
+ [01/08 07:45:44] mr.evaluation.evaluator INFO: Inference done 235/320. 0.0223 s / img. ETA=0:00:13
481
+ [01/08 07:45:49] mr.evaluation.evaluator INFO: Inference done 267/320. 0.0223 s / img. ETA=0:00:08
482
+ [01/08 07:45:54] mr.evaluation.evaluator INFO: Inference done 299/320. 0.0222 s / img. ETA=0:00:03
483
+ [01/08 07:45:57] mr.evaluation.evaluator INFO: Total inference time: 0:00:49.500946 (0.157146 s / batch on 1 devices)
484
+ [01/08 07:45:57] mr.evaluation.evaluator INFO: Total inference pure compute time: 0:00:06 (0.022107 s / batch on 1 devices)
485
+ [01/08 07:46:07] mr.evaluation.scan_evaluator INFO: Structuring slices into volumes...
486
+ [01/08 07:46:07] mr.evaluation.scan_evaluator INFO: Structuring slices into volumes...
487
+ [01/08 07:46:10] mr.evaluation.recon_evaluation INFO: [ReconEvaluator] Slice metrics summary:
488
+ channel_0
489
+ --------------- --------------
490
+ val_nrmse 0.175 (0.043)
491
+ val_nrmse_mag 0.120 (0.032)
492
+ val_psnr 33.099 (2.996)
493
+ val_psnr_mag 36.426 (3.111)
494
+ val_ssim (Wang) 0.866 (0.082)
495
+
496
+ [01/08 07:46:10] mr.evaluation.recon_evaluation INFO: [ReconEvaluator] Scan metrics summary:
497
+ channel_0
498
+ -------------------- --------------
499
+ val_nrmse_mag_scan 0.111 (0.006)
500
+ val_nrmse_scan 0.163 (0.006)
501
+ val_psnr_mag_scan 44.388 (0.314)
502
+ val_psnr_scan 41.028 (0.479)
503
+ val_ssim (Wang)_scan 0.964 (0.002)
504
+
505
+ [01/08 07:46:10] mr.evaluation.evaluator INFO: Evaluation Time: 13.062179 s
506
+ [01/08 07:46:10] mr.engine.trainer INFO: Evaluation results for mridata_knee_2019_val in csv format:
507
+ [01/08 07:46:10] mr.evaluation.testing INFO: copypaste: val_nrmse,val_nrmse_mag,val_psnr,val_psnr_mag,val_ssim (Wang),val_nrmse_mag_scan,val_nrmse_scan,val_psnr_mag_scan,val_psnr_scan,val_ssim (Wang)_scan
508
+ [01/08 07:46:10] mr.evaluation.testing INFO: copypaste: 0.1754,0.1200,33.0992,36.4262,0.8660,0.1105,0.1627,44.3880,41.0275,0.9637
509
+ [01/08 07:46:10] mr.evaluation.testing INFO: Metrics (comma delimited):
510
+ val_nrmse,val_nrmse_mag,val_psnr,val_psnr_mag,val_ssim (Wang),val_nrmse_mag_scan,val_nrmse_scan,val_psnr_mag_scan,val_psnr_scan,val_ssim (Wang)_scan
511
+ 0.1754,0.1200,33.0992,36.4262,0.8660,0.1105,0.1627,44.3880,41.0275,0.9637
512
+ [01/08 07:46:10] mr.utils.events INFO: eta: 0:07:32 iter: 799 loss: 15171.014 total_loss: 15171.014 time: 0.2411 data_time: 0.0001 lr: 0.000080 max_mem: 4238M
513
+ [01/08 07:46:16] mr.utils.events INFO: eta: 0:07:27 iter: 819 loss: 14583.270 total_loss: 14583.270 time: 0.2411 data_time: 0.0001 lr: 0.000082 max_mem: 4238M
514
+ [01/08 07:46:21] mr.utils.events INFO: eta: 0:07:23 iter: 839 loss: 14240.295 total_loss: 14240.295 time: 0.2411 data_time: 0.0001 lr: 0.000084 max_mem: 4238M
515
+ [01/08 07:46:26] mr.utils.events INFO: eta: 0:07:18 iter: 859 loss: 15098.030 total_loss: 15098.030 time: 0.2411 data_time: 0.0001 lr: 0.000086 max_mem: 4238M
516
+ [01/08 07:46:31] mr.utils.events INFO: eta: 0:07:13 iter: 879 loss: 15402.230 total_loss: 15402.230 time: 0.2412 data_time: 0.0001 lr: 0.000088 max_mem: 4238M
517
+ [01/08 07:46:36] mr.utils.events INFO: eta: 0:07:08 iter: 899 loss: 14225.305 total_loss: 14225.305 time: 0.2412 data_time: 0.0001 lr: 0.000090 max_mem: 4238M
518
+ [01/08 07:46:43] mr.utils.events INFO: eta: 0:07:04 iter: 919 loss: 13569.448 total_loss: 13569.448 time: 0.2412 data_time: 0.0001 lr: 0.000092 max_mem: 4238M
519
+ [01/08 07:46:48] mr.utils.events INFO: eta: 0:06:59 iter: 939 loss: 14107.779 total_loss: 14107.779 time: 0.2412 data_time: 0.0001 lr: 0.000094 max_mem: 4238M
520
+ [01/08 07:46:53] mr.utils.events INFO: eta: 0:06:54 iter: 959 loss: 14675.758 total_loss: 14675.758 time: 0.2413 data_time: 0.0001 lr: 0.000096 max_mem: 4238M
521
+ [01/08 07:46:58] mr.utils.events INFO: eta: 0:06:50 iter: 979 loss: 14544.494 total_loss: 14544.494 time: 0.2413 data_time: 0.0001 lr: 0.000098 max_mem: 4238M
522
+ [01/08 07:47:03] fvcore.common.checkpoint INFO: Saving checkpoint to /bmrNAS/people/arjun/results/meddlr/tests/basic/model_0000999.pth
523
+ [01/08 07:47:04] mr.data.datasets.register_mrco INFO: Loading /bmrNAS/people/arjun/code/meddlr/annotations/mridata_knee_2019/val.json takes 0.00 seconds
524
+ [01/08 07:47:04] mr.data.build INFO: Dropped 0 scans. 2 scans remaining
525
+ [01/08 07:47:04] mr.data.build INFO: Dropped references for 0/2 scans. 2 scans with reference remaining
526
+ [01/08 07:47:04] mr.evaluation.evaluator INFO: Start inference on 320 batches
527
+ [01/08 07:47:08] mr.evaluation.evaluator INFO: Inference done 11/320. 0.0250 s / img. ETA=0:00:48
528
+ [01/08 07:47:13] mr.evaluation.evaluator INFO: Inference done 43/320. 0.0227 s / img. ETA=0:00:43
529
+ [01/08 07:47:18] mr.evaluation.evaluator INFO: Inference done 75/320. 0.0225 s / img. ETA=0:00:38
530
+ [01/08 07:47:23] mr.evaluation.evaluator INFO: Inference done 107/320. 0.0225 s / img. ETA=0:00:33
531
+ [01/08 07:47:28] mr.evaluation.evaluator INFO: Inference done 139/320. 0.0224 s / img. ETA=0:00:28
532
+ [01/08 07:47:33] mr.evaluation.evaluator INFO: Inference done 171/320. 0.0224 s / img. ETA=0:00:23
533
+ [01/08 07:47:38] mr.evaluation.evaluator INFO: Inference done 203/320. 0.0223 s / img. ETA=0:00:18
534
+ [01/08 07:47:43] mr.evaluation.evaluator INFO: Inference done 235/320. 0.0223 s / img. ETA=0:00:13
535
+ [01/08 07:47:48] mr.evaluation.evaluator INFO: Inference done 267/320. 0.0223 s / img. ETA=0:00:08
536
+ [01/08 07:47:53] mr.evaluation.evaluator INFO: Inference done 299/320. 0.0223 s / img. ETA=0:00:03
537
+ [01/08 07:47:56] mr.evaluation.evaluator INFO: Total inference time: 0:00:49.544317 (0.157284 s / batch on 1 devices)
538
+ [01/08 07:47:56] mr.evaluation.evaluator INFO: Total inference pure compute time: 0:00:06 (0.022172 s / batch on 1 devices)
539
+ [01/08 07:48:06] mr.evaluation.scan_evaluator INFO: Structuring slices into volumes...
540
+ [01/08 07:48:06] mr.evaluation.scan_evaluator INFO: Structuring slices into volumes...
541
+ [01/08 07:48:09] mr.evaluation.recon_evaluation INFO: [ReconEvaluator] Slice metrics summary:
542
+ channel_0
543
+ --------------- --------------
544
+ val_nrmse 0.175 (0.042)
545
+ val_nrmse_mag 0.138 (0.030)
546
+ val_psnr 33.089 (3.029)
547
+ val_psnr_mag 35.133 (2.998)
548
+ val_ssim (Wang) 0.810 (0.075)
549
+
550
+ [01/08 07:48:09] mr.evaluation.recon_evaluation INFO: [ReconEvaluator] Scan metrics summary:
551
+ channel_0
552
+ -------------------- --------------
553
+ val_nrmse_mag_scan 0.129 (0.006)
554
+ val_nrmse_scan 0.163 (0.005)
555
+ val_psnr_mag_scan 43.045 (0.422)
556
+ val_psnr_scan 41.020 (0.545)
557
+ val_ssim (Wang)_scan 0.932 (0.011)
558
+
559
+ [01/08 07:48:09] mr.evaluation.evaluator INFO: Evaluation Time: 13.296574 s
560
+ [01/08 07:48:09] mr.engine.trainer INFO: Evaluation results for mridata_knee_2019_val in csv format:
561
+ [01/08 07:48:09] mr.evaluation.testing INFO: copypaste: val_nrmse,val_nrmse_mag,val_psnr,val_psnr_mag,val_ssim (Wang),val_nrmse_mag_scan,val_nrmse_scan,val_psnr_mag_scan,val_psnr_scan,val_ssim (Wang)_scan
562
+ [01/08 07:48:09] mr.evaluation.testing INFO: copypaste: 0.1755,0.1383,33.0890,35.1330,0.8102,0.1290,0.1628,43.0453,41.0200,0.9319
563
+ [01/08 07:48:09] mr.evaluation.testing INFO: Metrics (comma delimited):
564
+ val_nrmse,val_nrmse_mag,val_psnr,val_psnr_mag,val_ssim (Wang),val_nrmse_mag_scan,val_nrmse_scan,val_psnr_mag_scan,val_psnr_scan,val_ssim (Wang)_scan
565
+ 0.1755,0.1383,33.0890,35.1330,0.8102,0.1290,0.1628,43.0453,41.0200,0.9319
566
+ [01/08 07:48:09] mr.utils.events INFO: eta: 0:05:40 iter: 999 loss: 14674.882 total_loss: 14674.882 time: 0.2413 data_time: 0.0001 lr: 0.000100 max_mem: 4240M
567
+ [01/08 07:48:15] mr.utils.events INFO: eta: 0:05:35 iter: 1019 loss: 14348.898 total_loss: 14348.898 time: 0.2413 data_time: 0.0001 lr: 0.000100 max_mem: 4240M
568
+ [01/08 07:48:20] mr.utils.events INFO: eta: 0:05:31 iter: 1039 loss: 14988.102 total_loss: 14988.102 time: 0.2413 data_time: 0.0001 lr: 0.000100 max_mem: 4240M
569
+ [01/08 07:48:25] mr.utils.events INFO: eta: 0:05:26 iter: 1059 loss: 17364.371 total_loss: 17364.371 time: 0.2413 data_time: 0.0001 lr: 0.000100 max_mem: 4240M
570
+ [01/08 07:48:30] mr.utils.events INFO: eta: 0:05:21 iter: 1079 loss: 14381.812 total_loss: 14381.812 time: 0.2413 data_time: 0.0001 lr: 0.000100 max_mem: 4240M
571
+ [01/08 07:48:35] mr.utils.events INFO: eta: 0:05:16 iter: 1099 loss: 14260.652 total_loss: 14260.652 time: 0.2413 data_time: 0.0001 lr: 0.000100 max_mem: 4240M
572
+ [01/08 07:48:41] mr.utils.events INFO: eta: 0:05:12 iter: 1119 loss: 14124.476 total_loss: 14124.476 time: 0.2414 data_time: 0.0001 lr: 0.000100 max_mem: 4240M
573
+ [01/08 07:48:46] mr.utils.events INFO: eta: 0:05:07 iter: 1139 loss: 13414.080 total_loss: 13414.080 time: 0.2414 data_time: 0.0001 lr: 0.000100 max_mem: 4240M
574
+ [01/08 07:48:51] mr.utils.events INFO: eta: 0:05:02 iter: 1159 loss: 14458.338 total_loss: 14458.338 time: 0.2414 data_time: 0.0001 lr: 0.000100 max_mem: 4240M
575
+ [01/08 07:48:56] mr.utils.events INFO: eta: 0:04:57 iter: 1179 loss: 13799.362 total_loss: 13799.362 time: 0.2414 data_time: 0.0001 lr: 0.000100 max_mem: 4240M
576
+ [01/08 07:49:01] fvcore.common.checkpoint INFO: Saving checkpoint to /bmrNAS/people/arjun/results/meddlr/tests/basic/model_0001199.pth
577
+ [01/08 07:49:02] mr.data.datasets.register_mrco INFO: Loading /bmrNAS/people/arjun/code/meddlr/annotations/mridata_knee_2019/val.json takes 0.00 seconds
578
+ [01/08 07:49:02] mr.data.build INFO: Dropped 0 scans. 2 scans remaining
579
+ [01/08 07:49:02] mr.data.build INFO: Dropped references for 0/2 scans. 2 scans with reference remaining
580
+ [01/08 07:49:02] mr.evaluation.evaluator INFO: Start inference on 320 batches
581
+ [01/08 07:49:06] mr.evaluation.evaluator INFO: Inference done 11/320. 0.0246 s / img. ETA=0:00:48
582
+ [01/08 07:49:11] mr.evaluation.evaluator INFO: Inference done 43/320. 0.0227 s / img. ETA=0:00:43
583
+ [01/08 07:49:16] mr.evaluation.evaluator INFO: Inference done 75/320. 0.0224 s / img. ETA=0:00:38
584
+ [01/08 07:49:21] mr.evaluation.evaluator INFO: Inference done 107/320. 0.0224 s / img. ETA=0:00:33
585
+ [01/08 07:49:26] mr.evaluation.evaluator INFO: Inference done 139/320. 0.0224 s / img. ETA=0:00:28
586
+ [01/08 07:49:31] mr.evaluation.evaluator INFO: Inference done 171/320. 0.0223 s / img. ETA=0:00:23
587
+ [01/08 07:49:36] mr.evaluation.evaluator INFO: Inference done 203/320. 0.0223 s / img. ETA=0:00:18
588
+ [01/08 07:49:41] mr.evaluation.evaluator INFO: Inference done 235/320. 0.0223 s / img. ETA=0:00:13
589
+ [01/08 07:49:46] mr.evaluation.evaluator INFO: Inference done 267/320. 0.0223 s / img. ETA=0:00:08
590
+ [01/08 07:49:51] mr.evaluation.evaluator INFO: Inference done 299/320. 0.0223 s / img. ETA=0:00:03
591
+ [01/08 07:49:54] mr.evaluation.evaluator INFO: Total inference time: 0:00:49.547863 (0.157295 s / batch on 1 devices)
592
+ [01/08 07:49:54] mr.evaluation.evaluator INFO: Total inference pure compute time: 0:00:06 (0.022115 s / batch on 1 devices)
593
+ [01/08 07:50:04] mr.evaluation.scan_evaluator INFO: Structuring slices into volumes...
594
+ [01/08 07:50:04] mr.evaluation.scan_evaluator INFO: Structuring slices into volumes...
595
+ [01/08 07:50:08] mr.evaluation.recon_evaluation INFO: [ReconEvaluator] Slice metrics summary:
596
+ channel_0
597
+ --------------- --------------
598
+ val_nrmse 0.182 (0.041)
599
+ val_nrmse_mag 0.135 (0.029)
600
+ val_psnr 32.762 (2.957)
601
+ val_psnr_mag 35.311 (2.952)
602
+ val_ssim (Wang) 0.863 (0.078)
603
+
604
+ [01/08 07:50:08] mr.evaluation.recon_evaluation INFO: [ReconEvaluator] Scan metrics summary:
605
+ channel_0
606
+ -------------------- --------------
607
+ val_nrmse_mag_scan 0.127 (0.005)
608
+ val_nrmse_scan 0.170 (0.005)
609
+ val_psnr_mag_scan 43.202 (0.427)
610
+ val_psnr_scan 40.667 (0.561)
611
+ val_ssim (Wang)_scan 0.961 (0.005)
612
+
613
+ [01/08 07:50:08] mr.evaluation.evaluator INFO: Evaluation Time: 13.242378 s
614
+ [01/08 07:50:08] mr.engine.trainer INFO: Evaluation results for mridata_knee_2019_val in csv format:
615
+ [01/08 07:50:08] mr.evaluation.testing INFO: copypaste: val_nrmse,val_nrmse_mag,val_psnr,val_psnr_mag,val_ssim (Wang),val_nrmse_mag_scan,val_nrmse_scan,val_psnr_mag_scan,val_psnr_scan,val_ssim (Wang)_scan
616
+ [01/08 07:50:08] mr.evaluation.testing INFO: copypaste: 0.1817,0.1353,32.7618,35.3113,0.8626,0.1267,0.1695,43.2024,40.6668,0.9606
617
+ [01/08 07:50:08] mr.evaluation.testing INFO: Metrics (comma delimited):
618
+ val_nrmse,val_nrmse_mag,val_psnr,val_psnr_mag,val_ssim (Wang),val_nrmse_mag_scan,val_nrmse_scan,val_psnr_mag_scan,val_psnr_scan,val_ssim (Wang)_scan
619
+ 0.1817,0.1353,32.7618,35.3113,0.8626,0.1267,0.1695,43.2024,40.6668,0.9606
620
+ [01/08 07:50:08] mr.utils.events INFO: eta: 0:03:48 iter: 1199 loss: 14033.812 total_loss: 14033.812 time: 0.2414 data_time: 0.0001 lr: 0.000100 max_mem: 4241M
621
+ [01/08 07:50:13] mr.utils.events INFO: eta: 0:03:43 iter: 1219 loss: 15478.925 total_loss: 15478.925 time: 0.2414 data_time: 0.0001 lr: 0.000100 max_mem: 4241M
622
+ [01/08 07:50:18] mr.utils.events INFO: eta: 0:03:38 iter: 1239 loss: 14415.258 total_loss: 14415.258 time: 0.2414 data_time: 0.0001 lr: 0.000100 max_mem: 4241M
623
+ [01/08 07:50:23] mr.utils.events INFO: eta: 0:03:33 iter: 1259 loss: 14165.776 total_loss: 14165.776 time: 0.2414 data_time: 0.0001 lr: 0.000100 max_mem: 4241M
624
+ [01/08 07:50:28] mr.utils.events INFO: eta: 0:03:28 iter: 1279 loss: 14173.212 total_loss: 14173.212 time: 0.2414 data_time: 0.0001 lr: 0.000100 max_mem: 4241M
625
+ [01/08 07:50:34] mr.utils.events INFO: eta: 0:03:24 iter: 1299 loss: 13085.434 total_loss: 13085.434 time: 0.2414 data_time: 0.0001 lr: 0.000100 max_mem: 4241M
626
+ [01/08 07:50:39] mr.utils.events INFO: eta: 0:03:19 iter: 1319 loss: 12723.986 total_loss: 12723.986 time: 0.2414 data_time: 0.0001 lr: 0.000100 max_mem: 4241M
627
+ [01/08 07:50:45] mr.utils.events INFO: eta: 0:03:14 iter: 1339 loss: 15378.066 total_loss: 15378.066 time: 0.2414 data_time: 0.0001 lr: 0.000100 max_mem: 4241M
628
+ [01/08 07:50:50] mr.utils.events INFO: eta: 0:03:09 iter: 1359 loss: 14171.920 total_loss: 14171.920 time: 0.2414 data_time: 0.0001 lr: 0.000100 max_mem: 4241M
629
+ [01/08 07:50:55] mr.utils.events INFO: eta: 0:03:04 iter: 1379 loss: 14608.114 total_loss: 14608.114 time: 0.2415 data_time: 0.0001 lr: 0.000100 max_mem: 4241M
630
+ [01/08 07:51:00] fvcore.common.checkpoint INFO: Saving checkpoint to /bmrNAS/people/arjun/results/meddlr/tests/basic/model_0001399.pth
631
+ [01/08 07:51:01] mr.data.datasets.register_mrco INFO: Loading /bmrNAS/people/arjun/code/meddlr/annotations/mridata_knee_2019/val.json takes 0.00 seconds
632
+ [01/08 07:51:01] mr.data.build INFO: Dropped 0 scans. 2 scans remaining
633
+ [01/08 07:51:01] mr.data.build INFO: Dropped references for 0/2 scans. 2 scans with reference remaining
634
+ [01/08 07:51:01] mr.evaluation.evaluator INFO: Start inference on 320 batches
635
+ [01/08 07:51:05] mr.evaluation.evaluator INFO: Inference done 11/320. 0.0218 s / img. ETA=0:00:48
636
+ [01/08 07:51:10] mr.evaluation.evaluator INFO: Inference done 43/320. 0.0218 s / img. ETA=0:00:43
637
+ [01/08 07:51:15] mr.evaluation.evaluator INFO: Inference done 75/320. 0.0218 s / img. ETA=0:00:38
638
+ [01/08 07:51:20] mr.evaluation.evaluator INFO: Inference done 107/320. 0.0219 s / img. ETA=0:00:33
639
+ [01/08 07:51:25] mr.evaluation.evaluator INFO: Inference done 139/320. 0.0219 s / img. ETA=0:00:28
640
+ [01/08 07:51:30] mr.evaluation.evaluator INFO: Inference done 171/320. 0.0218 s / img. ETA=0:00:23
641
+ [01/08 07:51:35] mr.evaluation.evaluator INFO: Inference done 203/320. 0.0218 s / img. ETA=0:00:18
642
+ [01/08 07:51:40] mr.evaluation.evaluator INFO: Inference done 235/320. 0.0218 s / img. ETA=0:00:13
643
+ [01/08 07:51:45] mr.evaluation.evaluator INFO: Inference done 267/320. 0.0218 s / img. ETA=0:00:08
644
+ [01/08 07:51:50] mr.evaluation.evaluator INFO: Inference done 299/320. 0.0218 s / img. ETA=0:00:03
645
+ [01/08 07:51:53] mr.evaluation.evaluator INFO: Total inference time: 0:00:49.483551 (0.157091 s / batch on 1 devices)
646
+ [01/08 07:51:53] mr.evaluation.evaluator INFO: Total inference pure compute time: 0:00:06 (0.021677 s / batch on 1 devices)
647
+ [01/08 07:52:03] mr.evaluation.scan_evaluator INFO: Structuring slices into volumes...
648
+ [01/08 07:52:03] mr.evaluation.scan_evaluator INFO: Structuring slices into volumes...
649
+ [01/08 07:52:06] mr.evaluation.recon_evaluation INFO: [ReconEvaluator] Slice metrics summary:
650
+ channel_0
651
+ --------------- --------------
652
+ val_nrmse 0.164 (0.045)
653
+ val_nrmse_mag 0.120 (0.034)
654
+ val_psnr 33.694 (3.086)
655
+ val_psnr_mag 36.480 (3.132)
656
+ val_ssim (Wang) 0.833 (0.078)
657
+
658
+ [01/08 07:52:06] mr.evaluation.recon_evaluation INFO: [ReconEvaluator] Scan metrics summary:
659
+ channel_0
660
+ -------------------- --------------
661
+ val_nrmse_mag_scan 0.110 (0.008)
662
+ val_nrmse_scan 0.151 (0.006)
663
+ val_psnr_mag_scan 44.465 (0.208)
664
+ val_psnr_scan 41.657 (0.464)
665
+ val_ssim (Wang)_scan 0.944 (0.010)
666
+
667
+ [01/08 07:52:06] mr.evaluation.evaluator INFO: Evaluation Time: 13.212838 s
668
+ [01/08 07:52:06] mr.engine.trainer INFO: Evaluation results for mridata_knee_2019_val in csv format:
669
+ [01/08 07:52:06] mr.evaluation.testing INFO: copypaste: val_nrmse,val_nrmse_mag,val_psnr,val_psnr_mag,val_ssim (Wang),val_nrmse_mag_scan,val_nrmse_scan,val_psnr_mag_scan,val_psnr_scan,val_ssim (Wang)_scan
670
+ [01/08 07:52:06] mr.evaluation.testing INFO: copypaste: 0.1645,0.1196,33.6935,36.4799,0.8328,0.1096,0.1513,44.4653,41.6570,0.9443
671
+ [01/08 07:52:06] mr.evaluation.testing INFO: Metrics (comma delimited):
672
+ val_nrmse,val_nrmse_mag,val_psnr,val_psnr_mag,val_ssim (Wang),val_nrmse_mag_scan,val_nrmse_scan,val_psnr_mag_scan,val_psnr_scan,val_ssim (Wang)_scan
673
+ 0.1645,0.1196,33.6935,36.4799,0.8328,0.1096,0.1513,44.4653,41.6570,0.9443
674
+ [01/08 07:52:06] mr.utils.events INFO: eta: 0:01:54 iter: 1399 loss: 14015.138 total_loss: 14015.138 time: 0.2415 data_time: 0.0001 lr: 0.000100 max_mem: 4243M
675
+ [01/08 07:52:12] mr.utils.events INFO: eta: 0:01:49 iter: 1419 loss: 14504.874 total_loss: 14504.874 time: 0.2415 data_time: 0.0001 lr: 0.000100 max_mem: 4243M
676
+ [01/08 07:52:17] mr.utils.events INFO: eta: 0:01:44 iter: 1439 loss: 14570.553 total_loss: 14570.553 time: 0.2415 data_time: 0.0001 lr: 0.000100 max_mem: 4243M
677
+ [01/08 07:52:22] mr.utils.events INFO: eta: 0:01:39 iter: 1459 loss: 14148.630 total_loss: 14148.630 time: 0.2415 data_time: 0.0001 lr: 0.000100 max_mem: 4243M
678
+ [01/08 07:52:27] mr.utils.events INFO: eta: 0:01:34 iter: 1479 loss: 14428.591 total_loss: 14428.591 time: 0.2415 data_time: 0.0001 lr: 0.000100 max_mem: 4243M
679
+ [01/08 07:52:32] mr.utils.events INFO: eta: 0:01:30 iter: 1499 loss: 13502.969 total_loss: 13502.969 time: 0.2415 data_time: 0.0001 lr: 0.000100 max_mem: 4243M
680
+ [01/08 07:52:38] mr.utils.events INFO: eta: 0:01:25 iter: 1519 loss: 16368.226 total_loss: 16368.226 time: 0.2415 data_time: 0.0001 lr: 0.000100 max_mem: 4243M
681
+ [01/08 07:52:43] mr.utils.events INFO: eta: 0:01:20 iter: 1539 loss: 14534.019 total_loss: 14534.019 time: 0.2415 data_time: 0.0001 lr: 0.000100 max_mem: 4243M
682
+ [01/08 07:52:48] mr.utils.events INFO: eta: 0:01:15 iter: 1559 loss: 14640.928 total_loss: 14640.928 time: 0.2415 data_time: 0.0001 lr: 0.000100 max_mem: 4243M
683
+ [01/08 07:52:53] mr.utils.events INFO: eta: 0:01:10 iter: 1579 loss: 13991.085 total_loss: 13991.085 time: 0.2415 data_time: 0.0001 lr: 0.000100 max_mem: 4243M
684
+ [01/08 07:52:58] fvcore.common.checkpoint INFO: Saving checkpoint to /bmrNAS/people/arjun/results/meddlr/tests/basic/model_0001599.pth
685
+ [01/08 07:52:59] fvcore.common.checkpoint INFO: Saving checkpoint to /bmrNAS/people/arjun/results/meddlr/tests/basic/model_final.pth
686
+ [01/08 07:52:59] mr.data.datasets.register_mrco INFO: Loading /bmrNAS/people/arjun/code/meddlr/annotations/mridata_knee_2019/val.json takes 0.00 seconds
687
+ [01/08 07:52:59] mr.data.build INFO: Dropped 0 scans. 2 scans remaining
688
+ [01/08 07:52:59] mr.data.build INFO: Dropped references for 0/2 scans. 2 scans with reference remaining
689
+ [01/08 07:52:59] mr.evaluation.evaluator INFO: Start inference on 320 batches
690
+ [01/08 07:53:03] mr.evaluation.evaluator INFO: Inference done 11/320. 0.0260 s / img. ETA=0:00:48
691
+ [01/08 07:53:08] mr.evaluation.evaluator INFO: Inference done 43/320. 0.0230 s / img. ETA=0:00:43
692
+ [01/08 07:53:13] mr.evaluation.evaluator INFO: Inference done 75/320. 0.0228 s / img. ETA=0:00:38
693
+ [01/08 07:53:18] mr.evaluation.evaluator INFO: Inference done 107/320. 0.0227 s / img. ETA=0:00:33
694
+ [01/08 07:53:23] mr.evaluation.evaluator INFO: Inference done 139/320. 0.0227 s / img. ETA=0:00:28
695
+ [01/08 07:53:28] mr.evaluation.evaluator INFO: Inference done 171/320. 0.0226 s / img. ETA=0:00:23
696
+ [01/08 07:53:33] mr.evaluation.evaluator INFO: Inference done 203/320. 0.0226 s / img. ETA=0:00:18
697
+ [01/08 07:53:38] mr.evaluation.evaluator INFO: Inference done 235/320. 0.0226 s / img. ETA=0:00:13
698
+ [01/08 07:53:43] mr.evaluation.evaluator INFO: Inference done 267/320. 0.0225 s / img. ETA=0:00:08
699
+ [01/08 07:53:48] mr.evaluation.evaluator INFO: Inference done 299/320. 0.0225 s / img. ETA=0:00:03
700
+ [01/08 07:53:52] mr.evaluation.evaluator INFO: Total inference time: 0:00:49.495082 (0.157127 s / batch on 1 devices)
701
+ [01/08 07:53:52] mr.evaluation.evaluator INFO: Total inference pure compute time: 0:00:07 (0.022384 s / batch on 1 devices)
702
+ [01/08 07:54:01] mr.evaluation.scan_evaluator INFO: Structuring slices into volumes...
703
+ [01/08 07:54:01] mr.evaluation.scan_evaluator INFO: Structuring slices into volumes...
704
+ [01/08 07:54:05] mr.evaluation.recon_evaluation INFO: [ReconEvaluator] Slice metrics summary:
705
+ channel_0
706
+ --------------- --------------
707
+ val_nrmse 0.189 (0.041)
708
+ val_nrmse_mag 0.117 (0.032)
709
+ val_psnr 32.410 (2.903)
710
+ val_psnr_mag 36.686 (3.132)
711
+ val_ssim (Wang) 0.858 (0.081)
712
+
713
+ [01/08 07:54:05] mr.evaluation.recon_evaluation INFO: [ReconEvaluator] Scan metrics summary:
714
+ channel_0
715
+ -------------------- --------------
716
+ val_nrmse_mag_scan 0.107 (0.005)
717
+ val_nrmse_scan 0.177 (0.004)
718
+ val_psnr_mag_scan 44.659 (0.393)
719
+ val_psnr_scan 40.292 (0.600)
720
+ val_ssim (Wang)_scan 0.959 (0.005)
721
+
722
+ [01/08 07:54:05] mr.evaluation.evaluator INFO: Evaluation Time: 13.055382 s
723
+ [01/08 07:54:05] mr.engine.trainer INFO: Evaluation results for mridata_knee_2019_val in csv format:
724
+ [01/08 07:54:05] mr.evaluation.testing INFO: copypaste: val_nrmse,val_nrmse_mag,val_psnr,val_psnr_mag,val_ssim (Wang),val_nrmse_mag_scan,val_nrmse_scan,val_psnr_mag_scan,val_psnr_scan,val_ssim (Wang)_scan
725
+ [01/08 07:54:05] mr.evaluation.testing INFO: copypaste: 0.1889,0.1167,32.4100,36.6860,0.8582,0.1071,0.1770,44.6590,40.2923,0.9595
726
+ [01/08 07:54:05] mr.evaluation.testing INFO: Metrics (comma delimited):
727
+ val_nrmse,val_nrmse_mag,val_psnr,val_psnr_mag,val_ssim (Wang),val_nrmse_mag_scan,val_nrmse_scan,val_psnr_mag_scan,val_psnr_scan,val_ssim (Wang)_scan
728
+ 0.1889,0.1167,32.4100,36.6860,0.8582,0.1071,0.1770,44.6590,40.2923,0.9595
729
+ [01/08 07:54:05] mr.utils.events INFO: eta: 0:00:00 iter: 1599 loss: 13840.166 total_loss: 13840.166 time: 0.2415 data_time: 0.0001 lr: 0.000100 max_mem: 4245M
730
+ [01/08 07:54:05] mr.engine.hooks INFO: Overall training speed: 1597 iterations in 0:06:25 (0.2417 s / it)
731
+ [01/08 07:54:05] mr.engine.hooks INFO: Total training time: 0:15:56 (0:09:30 on hooks)
test-data/test-exps/basic-cpu-orig/metrics.json ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {"data_time": 5.8724312111735344e-05, "eta_seconds": 359.7661029919982, "iteration": 19, "l1": 100222.734375, "l2": 105335.453125, "loss": 100222.734375, "lr": 1.9981e-06, "mag_l1": 45874.640625, "nrmse": 0.9498541057109833, "psnr": 17.65980339050293, "time": 0.2275560423731804, "total_loss": 100222.734375}
2
+ {"data_time": 6.18775375187397e-05, "eta_seconds": 355.79611470457166, "iteration": 39, "l1": 31516.1572265625, "l2": 36795.162109375, "loss": 31516.1572265625, "lr": 3.9961e-06, "mag_l1": 19095.89453125, "nrmse": 0.35987813770771027, "psnr": 24.924463272094727, "time": 0.2281585254240781, "total_loss": 31516.1572265625}
3
+ {"data_time": 6.220047362148762e-05, "eta_seconds": 351.65974596049637, "iteration": 59, "l1": 27504.994140625, "l2": 31594.138671875, "loss": 27504.994140625, "lr": 5.9941e-06, "mag_l1": 17842.1787109375, "nrmse": 0.34179846942424774, "psnr": 25.010881423950195, "time": 0.2288526559714228, "total_loss": 27504.994140625}
4
+ {"data_time": 6.496254354715347e-05, "eta_seconds": 347.5765354356263, "iteration": 79, "l1": 24592.9775390625, "l2": 28486.150390625, "loss": 24592.9775390625, "lr": 7.992100000000001e-06, "mag_l1": 14971.4970703125, "nrmse": 0.27779413759708405, "psnr": 28.802139282226562, "time": 0.229887415189296, "total_loss": 24592.9775390625}
5
+ {"data_time": 5.4380856454372406e-05, "eta_seconds": 343.69499159487896, "iteration": 99, "l1": 24272.966796875, "l2": 28383.0615234375, "loss": 24272.966796875, "lr": 9.990100000000001e-06, "mag_l1": 15012.3876953125, "nrmse": 0.2517841160297394, "psnr": 28.905832290649414, "time": 0.23037182842381299, "total_loss": 24272.966796875}
6
+ {"data_time": 5.890103057026863e-05, "eta_seconds": 339.6647950960323, "iteration": 119, "l1": 21447.892578125, "l2": 24722.8623046875, "loss": 21447.892578125, "lr": 1.1988100000000001e-05, "mag_l1": 12709.44140625, "nrmse": 0.2571380138397217, "psnr": 28.92680072784424, "time": 0.2305097128264606, "total_loss": 21447.892578125}
7
+ {"data_time": 5.4702628403902054e-05, "eta_seconds": 335.8631269899197, "iteration": 139, "l1": 21284.9814453125, "l2": 24685.9150390625, "loss": 21284.9814453125, "lr": 1.3986100000000001e-05, "mag_l1": 12787.41162109375, "nrmse": 0.22890224307775497, "psnr": 29.934592247009277, "time": 0.23098056414164603, "total_loss": 21284.9814453125}
8
+ {"data_time": 5.424278788268566e-05, "eta_seconds": 331.58625689544715, "iteration": 159, "l1": 22184.0244140625, "l2": 26129.3408203125, "loss": 22184.0244140625, "lr": 1.59841e-05, "mag_l1": 13380.330078125, "nrmse": 0.21457883715629578, "psnr": 30.66695499420166, "time": 0.231865752954036, "total_loss": 22184.0244140625}
9
+ {"data_time": 5.870312452316284e-05, "eta_seconds": 327.49997398629785, "iteration": 179, "l1": 20008.4853515625, "l2": 23381.0966796875, "loss": 20008.4853515625, "lr": 1.79821e-05, "mag_l1": 11690.47705078125, "nrmse": 0.21840672194957733, "psnr": 31.178823471069336, "time": 0.2323051393032074, "total_loss": 20008.4853515625}
10
+ {"data_time": 5.784607492387295e-05, "eta_seconds": 781.7232149597257, "eval_time": 65.50886672688648, "iteration": 199, "l1": 18439.4609375, "l2": 21302.6396484375, "loss": 18439.4609375, "lr": 1.9980100000000002e-05, "mag_l1": 10959.69580078125, "mridata_knee_2019_val/val_nrmse": 0.21119296550750732, "mridata_knee_2019_val/val_nrmse_mag": 0.14042188227176666, "mridata_knee_2019_val/val_nrmse_mag_scan": 0.13098075985908508, "mridata_knee_2019_val/val_nrmse_scan": 0.19516313076019287, "mridata_knee_2019_val/val_psnr": 31.50898551940918, "mridata_knee_2019_val/val_psnr_mag": 35.01776885986328, "mridata_knee_2019_val/val_psnr_mag_scan": 42.91193389892578, "mridata_knee_2019_val/val_psnr_scan": 39.45012664794922, "mridata_knee_2019_val/val_ssim (Wang)": 0.8313655257225037, "mridata_knee_2019_val/val_ssim (Wang)_scan": 0.9571136832237244, "nrmse": 0.20757121592760086, "psnr": 31.32909393310547, "time": 0.23300355160608888, "total_loss": 18439.4609375}
11
+ {"data_time": 6.24675303697586e-05, "eta_seconds": 777.5016167950816, "iteration": 219, "l1": 17119.5302734375, "l2": 19805.7939453125, "loss": 17119.5302734375, "lr": 2.1978100000000002e-05, "mag_l1": 10015.462890625, "nrmse": 0.1938774362206459, "psnr": 30.70321273803711, "time": 0.23612941708415747, "total_loss": 17119.5302734375}
12
+ {"data_time": 5.823792889714241e-05, "eta_seconds": 773.430268256925, "iteration": 239, "l1": 16810.18359375, "l2": 19512.7353515625, "loss": 16810.18359375, "lr": 2.3976100000000002e-05, "mag_l1": 10032.50244140625, "nrmse": 0.19441143423318863, "psnr": 32.321815490722656, "time": 0.23683945694938302, "total_loss": 16810.18359375}
13
+ {"data_time": 5.306210368871689e-05, "eta_seconds": 769.3867072798312, "iteration": 259, "l1": 15697.525390625, "l2": 18000.83984375, "loss": 15697.525390625, "lr": 2.5974100000000003e-05, "mag_l1": 9294.5244140625, "nrmse": 0.18325212597846985, "psnr": 32.5817756652832, "time": 0.23687181528657675, "total_loss": 15697.525390625}
14
+ {"data_time": 5.4574571549892426e-05, "eta_seconds": 765.0014682286419, "iteration": 279, "l1": 16743.5009765625, "l2": 19644.951171875, "loss": 16743.5009765625, "lr": 2.7972100000000006e-05, "mag_l1": 9826.63916015625, "nrmse": 0.178735613822937, "psnr": 32.362422943115234, "time": 0.2371388718020171, "total_loss": 16743.5009765625}
15
+ {"data_time": 5.9471698477864265e-05, "eta_seconds": 760.7914731586352, "iteration": 299, "l1": 18045.7080078125, "l2": 21337.326171875, "loss": 18045.7080078125, "lr": 2.99701e-05, "mag_l1": 11358.94921875, "nrmse": 0.1879516988992691, "psnr": 33.47402000427246, "time": 0.23752471711486578, "total_loss": 18045.7080078125}
16
+ {"data_time": 5.260808393359184e-05, "eta_seconds": 756.4834678766783, "iteration": 319, "l1": 16170.23876953125, "l2": 18840.09765625, "loss": 16170.23876953125, "lr": 3.19681e-05, "mag_l1": 10087.16552734375, "nrmse": 0.17491864413022995, "psnr": 33.47911071777344, "time": 0.23755790293216705, "total_loss": 16170.23876953125}
17
+ {"data_time": 6.039696745574474e-05, "eta_seconds": 752.3012556107715, "iteration": 339, "l1": 16581.4560546875, "l2": 19720.4150390625, "loss": 16581.4560546875, "lr": 3.396610000000001e-05, "mag_l1": 9956.6455078125, "nrmse": 0.16807971894741058, "psnr": 32.520633697509766, "time": 0.23822321253828704, "total_loss": 16581.4560546875}
18
+ {"data_time": 5.4969219490885735e-05, "eta_seconds": 748.101056287298, "iteration": 359, "l1": 17071.638671875, "l2": 20010.2890625, "loss": 17071.638671875, "lr": 3.5964100000000004e-05, "mag_l1": 9391.9033203125, "nrmse": 0.18630316108465195, "psnr": 32.44930362701416, "time": 0.23855405417270958, "total_loss": 17071.638671875}
19
+ {"data_time": 6.400910206139088e-05, "eta_seconds": 745.4217541089747, "iteration": 379, "l1": 16226.62060546875, "l2": 19523.4189453125, "loss": 16226.62060546875, "lr": 3.79621e-05, "mag_l1": 9416.60107421875, "nrmse": 0.17075738310813904, "psnr": 33.098426818847656, "time": 0.23870971496216953, "total_loss": 16226.62060546875}
20
+ {"data_time": 6.912671960890293e-05, "eta_seconds": 675.1914435480721, "eval_time": 65.21572437603027, "iteration": 399, "l1": 14768.04931640625, "l2": 17055.80078125, "loss": 14768.04931640625, "lr": 3.9960100000000004e-05, "mag_l1": 9220.15283203125, "mridata_knee_2019_val/val_nrmse": 0.1757533848285675, "mridata_knee_2019_val/val_nrmse_mag": 0.12175821512937546, "mridata_knee_2019_val/val_nrmse_mag_scan": 0.11281701177358627, "mridata_knee_2019_val/val_nrmse_scan": 0.16258126497268677, "mridata_knee_2019_val/val_psnr": 33.09370422363281, "mridata_knee_2019_val/val_psnr_mag": 36.27151870727539, "mridata_knee_2019_val/val_psnr_mag_scan": 44.20783233642578, "mridata_knee_2019_val/val_psnr_scan": 41.0316162109375, "mridata_knee_2019_val/val_ssim (Wang)": 0.8601711392402649, "mridata_knee_2019_val/val_ssim (Wang)_scan": 0.9629950523376465, "nrmse": 0.16873526573181152, "psnr": 32.80202674865723, "time": 0.2387961558997631, "total_loss": 14768.04931640625}
21
+ {"data_time": 7.513235323131084e-05, "eta_seconds": 671.0235092118382, "iteration": 419, "l1": 14830.16259765625, "l2": 17615.15625, "loss": 14830.16259765625, "lr": 4.19581e-05, "mag_l1": 9204.087890625, "nrmse": 0.1725487932562828, "psnr": 30.818349838256836, "time": 0.23959360411390662, "total_loss": 14830.16259765625}
22
+ {"data_time": 5.370704457163811e-05, "eta_seconds": 666.754473348381, "iteration": 439, "l1": 16323.92529296875, "l2": 20057.7763671875, "loss": 16323.92529296875, "lr": 4.39561e-05, "mag_l1": 10422.1875, "nrmse": 0.16905327886343002, "psnr": 32.574934005737305, "time": 0.23974267323501408, "total_loss": 16323.92529296875}
23
+ {"data_time": 5.7570869103074074e-05, "eta_seconds": 662.2949810451828, "iteration": 459, "l1": 14716.6279296875, "l2": 17047.45703125, "loss": 14716.6279296875, "lr": 4.595410000000001e-05, "mag_l1": 9128.31640625, "nrmse": 0.17508791387081146, "psnr": 32.69980430603027, "time": 0.23981898836791515, "total_loss": 14716.6279296875}
24
+ {"data_time": 5.569588392972946e-05, "eta_seconds": 657.7139136565384, "iteration": 479, "l1": 15069.6884765625, "l2": 17629.1826171875, "loss": 15069.6884765625, "lr": 4.79521e-05, "mag_l1": 9372.9423828125, "nrmse": 0.1709083691239357, "psnr": 32.34677314758301, "time": 0.24022742290981114, "total_loss": 15069.6884765625}
25
+ {"data_time": 5.885818973183632e-05, "eta_seconds": 653.1895788100082, "iteration": 499, "l1": 14391.693359375, "l2": 16699.546875, "loss": 14391.693359375, "lr": 4.99501e-05, "mag_l1": 8994.11083984375, "nrmse": 0.1650351881980896, "psnr": 31.85970973968506, "time": 0.24092645151540637, "total_loss": 14391.693359375}
26
+ {"data_time": 5.716690793633461e-05, "eta_seconds": 648.6794284288771, "iteration": 519, "l1": 14284.78369140625, "l2": 16909.150390625, "loss": 14284.78369140625, "lr": 5.19481e-05, "mag_l1": 9106.72412109375, "nrmse": 0.1907998025417328, "psnr": 31.51411724090576, "time": 0.24120248132385314, "total_loss": 14284.78369140625}
27
+ {"data_time": 5.3374795243144035e-05, "eta_seconds": 644.0714051092509, "iteration": 539, "l1": 15812.8369140625, "l2": 18632.939453125, "loss": 15812.8369140625, "lr": 5.394610000000001e-05, "mag_l1": 10317.34521484375, "nrmse": 0.18836764246225357, "psnr": 32.00579261779785, "time": 0.24083498888649046, "total_loss": 15812.8369140625}
28
+ {"data_time": 5.93625009059906e-05, "eta_seconds": 639.4391512828879, "iteration": 559, "l1": 15930.27685546875, "l2": 19070.7373046875, "loss": 15930.27685546875, "lr": 5.594410000000001e-05, "mag_l1": 9948.8251953125, "nrmse": 0.16790058463811874, "psnr": 33.792518615722656, "time": 0.24105555634014308, "total_loss": 15930.27685546875}
29
+ {"data_time": 6.131036207079887e-05, "eta_seconds": 634.8660601780284, "iteration": 579, "l1": 15495.3310546875, "l2": 18695.056640625, "loss": 15495.3310546875, "lr": 5.79421e-05, "mag_l1": 9255.50146484375, "nrmse": 0.17250918596982956, "psnr": 32.08197212219238, "time": 0.23958933143876493, "total_loss": 15495.3310546875}
30
+ {"data_time": 5.2372924983501434e-05, "eta_seconds": 564.3750415984541, "eval_time": 65.27971871802583, "iteration": 599, "l1": 13945.58984375, "l2": 16040.55419921875, "loss": 13945.58984375, "lr": 5.99401e-05, "mag_l1": 8719.3701171875, "mridata_knee_2019_val/val_nrmse": 0.21740230917930603, "mridata_knee_2019_val/val_nrmse_mag": 0.1690828800201416, "mridata_knee_2019_val/val_nrmse_mag_scan": 0.1621265858411789, "mridata_knee_2019_val/val_nrmse_scan": 0.20664377510547638, "mridata_knee_2019_val/val_psnr": 31.13789939880371, "mridata_knee_2019_val/val_psnr_mag": 33.29239273071289, "mridata_knee_2019_val/val_psnr_mag_scan": 41.054168701171875, "mridata_knee_2019_val/val_psnr_scan": 38.9461669921875, "mridata_knee_2019_val/val_ssim (Wang)": 0.8669157028198242, "mridata_knee_2019_val/val_ssim (Wang)_scan": 0.962317705154419, "nrmse": 0.17693433165550232, "psnr": 31.752036094665527, "time": 0.23968674917705357, "total_loss": 13945.58984375}
31
+ {"data_time": 6.620865315198898e-05, "eta_seconds": 559.7923359277193, "iteration": 619, "l1": 16922.677734375, "l2": 20442.275390625, "loss": 16922.677734375, "lr": 6.19381e-05, "mag_l1": 10771.60205078125, "nrmse": 0.1732729971408844, "psnr": 31.959287643432617, "time": 0.2412481210194528, "total_loss": 16922.677734375}
32
+ {"data_time": 6.0440972447395325e-05, "eta_seconds": 555.2091883267276, "iteration": 639, "l1": 14901.4384765625, "l2": 17548.1337890625, "loss": 14901.4384765625, "lr": 6.39361e-05, "mag_l1": 9096.962890625, "nrmse": 0.1762162446975708, "psnr": 31.8342342376709, "time": 0.24096761411055923, "total_loss": 14901.4384765625}
33
+ {"data_time": 6.218347698450089e-05, "eta_seconds": 550.6653766552918, "iteration": 659, "l1": 14073.5859375, "l2": 16592.2099609375, "loss": 14073.5859375, "lr": 6.593410000000002e-05, "mag_l1": 9030.03076171875, "nrmse": 0.15368197858333588, "psnr": 33.77932357788086, "time": 0.24131403397768736, "total_loss": 14073.5859375}
34
+ {"data_time": 6.726104766130447e-05, "eta_seconds": 546.017190946266, "iteration": 679, "l1": 16618.61865234375, "l2": 19782.0, "loss": 16618.61865234375, "lr": 6.79321e-05, "mag_l1": 9106.97998046875, "nrmse": 0.23360496759414673, "psnr": 30.814631462097168, "time": 0.24130445928312838, "total_loss": 16618.61865234375}
35
+ {"data_time": 5.734688602387905e-05, "eta_seconds": 541.3740438017994, "iteration": 699, "l1": 17848.931640625, "l2": 21452.94140625, "loss": 17848.931640625, "lr": 6.99301e-05, "mag_l1": 9782.14990234375, "nrmse": 0.19186626374721527, "psnr": 31.149123191833496, "time": 0.24131983146071434, "total_loss": 17848.931640625}
36
+ {"data_time": 6.245030090212822e-05, "eta_seconds": 536.7700682769064, "iteration": 719, "l1": 16070.6552734375, "l2": 19046.9248046875, "loss": 16070.6552734375, "lr": 7.19281e-05, "mag_l1": 10046.9697265625, "nrmse": 0.17738544940948486, "psnr": 32.256874084472656, "time": 0.2416476490907371, "total_loss": 16070.6552734375}
37
+ {"data_time": 5.751941353082657e-05, "eta_seconds": 532.09958262695, "iteration": 739, "l1": 16163.8388671875, "l2": 19273.8505859375, "loss": 16163.8388671875, "lr": 7.39261e-05, "mag_l1": 10863.3994140625, "nrmse": 0.17159220576286316, "psnr": 32.226511001586914, "time": 0.24180498835630715, "total_loss": 16163.8388671875}
38
+ {"data_time": 6.0913385823369026e-05, "eta_seconds": 527.4070877090562, "iteration": 759, "l1": 15517.578125, "l2": 18530.16796875, "loss": 15517.578125, "lr": 7.592410000000001e-05, "mag_l1": 10333.841796875, "nrmse": 0.17064187675714493, "psnr": 32.9786262512207, "time": 0.24176917085424066, "total_loss": 15517.578125}
39
+ {"data_time": 5.797506310045719e-05, "eta_seconds": 522.7074842385482, "iteration": 779, "l1": 15658.6162109375, "l2": 18578.34375, "loss": 15658.6162109375, "lr": 7.792210000000001e-05, "mag_l1": 10350.3935546875, "nrmse": 0.19206879287958145, "psnr": 31.120914459228516, "time": 0.2415855524595827, "total_loss": 15658.6162109375}
40
+ {"data_time": 6.991904228925705e-05, "eta_seconds": 452.5696406052448, "eval_time": 65.14025392197073, "iteration": 799, "l1": 15171.013671875, "l2": 17667.1025390625, "loss": 15171.013671875, "lr": 7.992010000000001e-05, "mag_l1": 10075.4072265625, "mridata_knee_2019_val/val_nrmse": 0.17539028823375702, "mridata_knee_2019_val/val_nrmse_mag": 0.12004988640546799, "mridata_knee_2019_val/val_nrmse_mag_scan": 0.11052785813808441, "mridata_knee_2019_val/val_nrmse_scan": 0.16266724467277527, "mridata_knee_2019_val/val_psnr": 33.0992317199707, "mridata_knee_2019_val/val_psnr_mag": 36.42616271972656, "mridata_knee_2019_val/val_psnr_mag_scan": 44.3879508972168, "mridata_knee_2019_val/val_psnr_scan": 41.02751922607422, "mridata_knee_2019_val/val_ssim (Wang)": 0.8660423755645752, "mridata_knee_2019_val/val_ssim (Wang)_scan": 0.9637445211410522, "nrmse": 0.18343299627304077, "psnr": 32.41549491882324, "time": 0.24183343723416328, "total_loss": 15171.013671875}
41
+ {"data_time": 7.512141019105911e-05, "eta_seconds": 447.9036651540082, "iteration": 819, "l1": 14583.26953125, "l2": 17043.158203125, "loss": 14583.26953125, "lr": 8.19181e-05, "mag_l1": 9485.7109375, "nrmse": 0.16736038029193878, "psnr": 32.584394454956055, "time": 0.24138905154541135, "total_loss": 14583.26953125}
42
+ {"data_time": 6.399606354534626e-05, "eta_seconds": 443.1866772051435, "iteration": 839, "l1": 14240.29541015625, "l2": 16422.294921875, "loss": 14240.29541015625, "lr": 8.39161e-05, "mag_l1": 9222.408203125, "nrmse": 0.16300085186958313, "psnr": 33.409629821777344, "time": 0.24130377755500376, "total_loss": 14240.29541015625}
43
+ {"data_time": 6.631691940128803e-05, "eta_seconds": 438.4512874945067, "iteration": 859, "l1": 15098.02978515625, "l2": 17780.9443359375, "loss": 15098.02978515625, "lr": 8.59141e-05, "mag_l1": 9713.8837890625, "nrmse": 0.16045530885457993, "psnr": 33.81159973144531, "time": 0.24177287705242634, "total_loss": 15098.02978515625}
44
+ {"data_time": 5.9098005294799805e-05, "eta_seconds": 433.70834848470986, "iteration": 879, "l1": 15402.22998046875, "l2": 18384.1494140625, "loss": 15402.22998046875, "lr": 8.791210000000002e-05, "mag_l1": 9694.9169921875, "nrmse": 0.1808141991496086, "psnr": 31.314088821411133, "time": 0.2416655495762825, "total_loss": 15402.22998046875}
45
+ {"data_time": 6.526568904519081e-05, "eta_seconds": 428.9955665911548, "iteration": 899, "l1": 14225.3046875, "l2": 16831.7080078125, "loss": 14225.3046875, "lr": 8.99101e-05, "mag_l1": 8984.27685546875, "nrmse": 0.16628511250019073, "psnr": 33.05383110046387, "time": 0.24178943410515785, "total_loss": 14225.3046875}
46
+ {"data_time": 5.5674463510513306e-05, "eta_seconds": 424.2737150671892, "iteration": 919, "l1": 13569.4482421875, "l2": 15698.2265625, "loss": 13569.4482421875, "lr": 9.190810000000001e-05, "mag_l1": 8879.82275390625, "nrmse": 0.17601968348026276, "psnr": 32.2679443359375, "time": 0.24159764288924634, "total_loss": 13569.4482421875}
47
+ {"data_time": 5.8833975344896317e-05, "eta_seconds": 419.53274534014054, "iteration": 939, "l1": 14107.779296875, "l2": 16392.865234375, "loss": 14107.779296875, "lr": 9.39061e-05, "mag_l1": 9469.955078125, "nrmse": 0.1552620753645897, "psnr": 33.6201286315918, "time": 0.24200359848327935, "total_loss": 14107.779296875}
48
+ {"data_time": 6.517861038446426e-05, "eta_seconds": 414.78292379016057, "iteration": 959, "l1": 14675.75830078125, "l2": 17464.642578125, "loss": 14675.75830078125, "lr": 9.59041e-05, "mag_l1": 9506.83740234375, "nrmse": 0.1567152440547943, "psnr": 33.60637664794922, "time": 0.24204439693130553, "total_loss": 14675.75830078125}
49
+ {"data_time": 5.8105913922190666e-05, "eta_seconds": 410.0535108183976, "iteration": 979, "l1": 14544.49365234375, "l2": 16932.5185546875, "loss": 14544.49365234375, "lr": 9.79021e-05, "mag_l1": 9430.4189453125, "nrmse": 0.1516100913286209, "psnr": 34.3247127532959, "time": 0.24203661270439625, "total_loss": 14544.49365234375}
50
+ {"data_time": 5.2456045523285866e-05, "eta_seconds": 340.6981165597681, "eval_time": 65.67177260806784, "iteration": 999, "l1": 14674.8818359375, "l2": 17385.3017578125, "loss": 14674.8818359375, "lr": 9.990010000000001e-05, "mag_l1": 9422.5478515625, "mridata_knee_2019_val/val_nrmse": 0.1754719614982605, "mridata_knee_2019_val/val_nrmse_mag": 0.13826291263103485, "mridata_knee_2019_val/val_nrmse_mag_scan": 0.12896385788917542, "mridata_knee_2019_val/val_nrmse_scan": 0.16278696060180664, "mridata_knee_2019_val/val_psnr": 33.088985443115234, "mridata_knee_2019_val/val_psnr_mag": 35.132991790771484, "mridata_knee_2019_val/val_psnr_mag_scan": 43.045326232910156, "mridata_knee_2019_val/val_psnr_scan": 41.02001953125, "mridata_knee_2019_val/val_ssim (Wang)": 0.8101894855499268, "mridata_knee_2019_val/val_ssim (Wang)_scan": 0.9319007396697998, "nrmse": 0.15127498656511307, "psnr": 34.61575889587402, "time": 0.24188144388608634, "total_loss": 14674.8818359375}
51
+ {"data_time": 5.9067970141768456e-05, "eta_seconds": 335.97087895008735, "iteration": 1019, "l1": 14348.8984375, "l2": 16938.6728515625, "loss": 14348.8984375, "lr": 0.0001, "mag_l1": 9765.14794921875, "nrmse": 0.17587070167064667, "psnr": 32.656362533569336, "time": 0.24134634691290557, "total_loss": 14348.8984375}
52
+ {"data_time": 6.118882447481155e-05, "eta_seconds": 331.23924408643506, "iteration": 1039, "l1": 14988.1015625, "l2": 18155.8056640625, "loss": 14988.1015625, "lr": 0.0001, "mag_l1": 10476.525390625, "nrmse": 0.18506795167922974, "psnr": 31.962905883789062, "time": 0.241583890048787, "total_loss": 14988.1015625}
53
+ {"data_time": 6.161979399621487e-05, "eta_seconds": 326.47347527882084, "iteration": 1059, "l1": 17364.37109375, "l2": 20799.6396484375, "loss": 17364.37109375, "lr": 0.0001, "mag_l1": 11414.58203125, "nrmse": 0.18761789798736572, "psnr": 31.90066146850586, "time": 0.24163383385166526, "total_loss": 17364.37109375}
54
+ {"data_time": 6.794603541493416e-05, "eta_seconds": 321.7045300004538, "iteration": 1079, "l1": 14381.8115234375, "l2": 16754.91796875, "loss": 14381.8115234375, "lr": 0.0001, "mag_l1": 10022.2314453125, "nrmse": 0.17259720712900162, "psnr": 32.45737075805664, "time": 0.24146606703288853, "total_loss": 14381.8115234375}
55
+ {"data_time": 6.646313704550266e-05, "eta_seconds": 316.9261127819773, "iteration": 1099, "l1": 14260.65185546875, "l2": 16611.7568359375, "loss": 14260.65185546875, "lr": 0.0001, "mag_l1": 9162.88037109375, "nrmse": 0.15355423092842102, "psnr": 32.858924865722656, "time": 0.24221350206062198, "total_loss": 14260.65185546875}
56
+ {"data_time": 6.980751641094685e-05, "eta_seconds": 312.15706994733773, "iteration": 1119, "l1": 14124.47607421875, "l2": 16373.28759765625, "loss": 14124.47607421875, "lr": 0.0001, "mag_l1": 9208.14208984375, "nrmse": 0.1590411514043808, "psnr": 33.97137260437012, "time": 0.24161972617730498, "total_loss": 14124.47607421875}
57
+ {"data_time": 6.412551738321781e-05, "eta_seconds": 307.36848895973526, "iteration": 1139, "l1": 13414.080078125, "l2": 15577.26513671875, "loss": 13414.080078125, "lr": 0.0001, "mag_l1": 9122.6162109375, "nrmse": 0.1631639003753662, "psnr": 32.320106506347656, "time": 0.24181801592931151, "total_loss": 13414.080078125}
58
+ {"data_time": 5.296152085065842e-05, "eta_seconds": 302.5673929194454, "iteration": 1159, "l1": 14458.33837890625, "l2": 16905.0712890625, "loss": 14458.33837890625, "lr": 0.0001, "mag_l1": 9457.0810546875, "nrmse": 0.15660183131694794, "psnr": 32.847551345825195, "time": 0.24181626876816154, "total_loss": 14458.33837890625}
59
+ {"data_time": 5.789846181869507e-05, "eta_seconds": 297.7640440831892, "iteration": 1179, "l1": 13799.36181640625, "l2": 16046.197265625, "loss": 13799.36181640625, "lr": 0.0001, "mag_l1": 8992.48388671875, "nrmse": 0.15394268929958344, "psnr": 33.42691421508789, "time": 0.2419192420784384, "total_loss": 13799.36181640625}
60
+ {"data_time": 5.281809717416763e-05, "eta_seconds": 228.20380558352917, "eval_time": 65.78305590897799, "iteration": 1199, "l1": 14033.81201171875, "l2": 16493.9228515625, "loss": 14033.81201171875, "lr": 0.0001, "mag_l1": 9655.1611328125, "mridata_knee_2019_val/val_nrmse": 0.18173597753047943, "mridata_knee_2019_val/val_nrmse_mag": 0.1352604776620865, "mridata_knee_2019_val/val_nrmse_mag_scan": 0.12665021419525146, "mridata_knee_2019_val/val_nrmse_scan": 0.16953781247138977, "mridata_knee_2019_val/val_psnr": 32.761844635009766, "mridata_knee_2019_val/val_psnr_mag": 35.311279296875, "mridata_knee_2019_val/val_psnr_mag_scan": 43.202449798583984, "mridata_knee_2019_val/val_psnr_scan": 40.666847229003906, "mridata_knee_2019_val/val_ssim (Wang)": 0.8625695109367371, "mridata_knee_2019_val/val_ssim (Wang)_scan": 0.9606165885925293, "nrmse": 0.16332802176475525, "psnr": 33.947330474853516, "time": 0.24200542853213847, "total_loss": 14033.81201171875}
61
+ {"data_time": 5.591195076704025e-05, "eta_seconds": 223.38669030740857, "iteration": 1219, "l1": 15478.92529296875, "l2": 18354.0029296875, "loss": 15478.92529296875, "lr": 0.0001, "mag_l1": 10046.9384765625, "nrmse": 0.1664258986711502, "psnr": 32.79239273071289, "time": 0.2412805170752108, "total_loss": 15478.92529296875}
62
+ {"data_time": 5.942396819591522e-05, "eta_seconds": 218.57006236631423, "iteration": 1239, "l1": 14415.25830078125, "l2": 16793.048828125, "loss": 14415.25830078125, "lr": 0.0001, "mag_l1": 9219.0849609375, "nrmse": 0.15688494592905045, "psnr": 33.95304489135742, "time": 0.24145523342303932, "total_loss": 14415.25830078125}
63
+ {"data_time": 6.720144301652908e-05, "eta_seconds": 213.75141527038068, "iteration": 1259, "l1": 14165.77587890625, "l2": 16886.115234375, "loss": 14165.77587890625, "lr": 0.0001, "mag_l1": 9268.1455078125, "nrmse": 0.14884252101182938, "psnr": 33.326005935668945, "time": 0.2413755594752729, "total_loss": 14165.77587890625}
64
+ {"data_time": 5.9649115428328514e-05, "eta_seconds": 208.9349760042969, "iteration": 1279, "l1": 14173.21240234375, "l2": 16730.4501953125, "loss": 14173.21240234375, "lr": 0.0001, "mag_l1": 9147.1650390625, "nrmse": 0.14594492316246033, "psnr": 35.1673583984375, "time": 0.2417582841590047, "total_loss": 14173.21240234375}
65
+ {"data_time": 5.298107862472534e-05, "eta_seconds": 204.11623431602493, "iteration": 1299, "l1": 13085.43359375, "l2": 15053.86474609375, "loss": 13085.43359375, "lr": 0.0001, "mag_l1": 8664.46337890625, "nrmse": 0.16419310122728348, "psnr": 32.35848426818848, "time": 0.24177921446971595, "total_loss": 13085.43359375}
66
+ {"data_time": 5.486304871737957e-05, "eta_seconds": 199.29702514316887, "iteration": 1319, "l1": 12723.986328125, "l2": 14628.30517578125, "loss": 12723.986328125, "lr": 0.0001, "mag_l1": 8421.12646484375, "nrmse": 0.14692717045545578, "psnr": 33.99099349975586, "time": 0.24154443060979247, "total_loss": 12723.986328125}
67
+ {"data_time": 6.129313260316849e-05, "eta_seconds": 194.47346941498108, "iteration": 1339, "l1": 15378.06591796875, "l2": 18187.669921875, "loss": 15378.06591796875, "lr": 0.0001, "mag_l1": 9888.9521484375, "nrmse": 0.1872420758008957, "psnr": 32.32719421386719, "time": 0.24176223343238235, "total_loss": 15378.06591796875}
68
+ {"data_time": 6.481958553195e-05, "eta_seconds": 189.64989149640314, "iteration": 1359, "l1": 14171.919921875, "l2": 16596.2197265625, "loss": 14171.919921875, "lr": 0.0001, "mag_l1": 9225.52783203125, "nrmse": 0.15043732523918152, "psnr": 33.77565574645996, "time": 0.24172992445528507, "total_loss": 14171.919921875}
69
+ {"data_time": 6.266427226364613e-05, "eta_seconds": 184.82441097451374, "iteration": 1379, "l1": 14608.1142578125, "l2": 17209.912109375, "loss": 14608.1142578125, "lr": 0.0001, "mag_l1": 9494.59619140625, "nrmse": 0.1493740975856781, "psnr": 33.855735778808594, "time": 0.24200989259406924, "total_loss": 14608.1142578125}
70
+ {"data_time": 6.442610174417496e-05, "eta_seconds": 114.19009395944886, "eval_time": 65.50695857033134, "iteration": 1399, "l1": 14015.1376953125, "l2": 16584.1767578125, "loss": 14015.1376953125, "lr": 0.0001, "mag_l1": 9409.0576171875, "mridata_knee_2019_val/val_nrmse": 0.1644728183746338, "mridata_knee_2019_val/val_nrmse_mag": 0.11962752044200897, "mridata_knee_2019_val/val_nrmse_mag_scan": 0.10959033668041229, "mridata_knee_2019_val/val_nrmse_scan": 0.15130001306533813, "mridata_knee_2019_val/val_psnr": 33.69352722167969, "mridata_knee_2019_val/val_psnr_mag": 36.47991180419922, "mridata_knee_2019_val/val_psnr_mag_scan": 44.46525192260742, "mridata_knee_2019_val/val_psnr_scan": 41.65702438354492, "mridata_knee_2019_val/val_ssim (Wang)": 0.8328330516815186, "mridata_knee_2019_val/val_ssim (Wang)_scan": 0.9443427920341492, "nrmse": 0.15654479712247849, "psnr": 33.70793914794922, "time": 0.2420408132020384, "total_loss": 14015.1376953125}
71
+ {"data_time": 6.348639726638794e-05, "eta_seconds": 109.35973707190715, "iteration": 1419, "l1": 14504.8740234375, "l2": 16892.572265625, "loss": 14504.8740234375, "lr": 0.0001, "mag_l1": 9062.95947265625, "nrmse": 0.158022902905941, "psnr": 33.28822135925293, "time": 0.241186557803303, "total_loss": 14504.8740234375}
72
+ {"data_time": 6.20309729129076e-05, "eta_seconds": 104.52975297998637, "iteration": 1439, "l1": 14570.55322265625, "l2": 16938.021484375, "loss": 14570.55322265625, "lr": 0.0001, "mag_l1": 9079.298828125, "nrmse": 0.15439824014902115, "psnr": 34.190120697021484, "time": 0.24121813056990504, "total_loss": 14570.55322265625}
73
+ {"data_time": 5.4096104577183723e-05, "eta_seconds": 99.70246424828656, "iteration": 1459, "l1": 14148.6298828125, "l2": 16456.64013671875, "loss": 14148.6298828125, "lr": 0.0001, "mag_l1": 9206.6796875, "nrmse": 0.15177085995674133, "psnr": 32.96951675415039, "time": 0.24162484845146537, "total_loss": 14148.6298828125}
74
+ {"data_time": 5.659833550453186e-05, "eta_seconds": 94.87435412872583, "iteration": 1479, "l1": 14428.59130859375, "l2": 16905.7626953125, "loss": 14428.59130859375, "lr": 0.0001, "mag_l1": 9294.62451171875, "nrmse": 0.1514386609196663, "psnr": 33.57109832763672, "time": 0.24139102082699537, "total_loss": 14428.59130859375}
75
+ {"data_time": 6.248452700674534e-05, "eta_seconds": 90.04354841634631, "iteration": 1499, "l1": 13502.96875, "l2": 15441.13330078125, "loss": 13502.96875, "lr": 0.0001, "mag_l1": 8899.90380859375, "nrmse": 0.15698648244142532, "psnr": 33.806413650512695, "time": 0.2414140475448221, "total_loss": 13502.96875}
76
+ {"data_time": 6.328010931611061e-05, "eta_seconds": 85.21348409936763, "iteration": 1519, "l1": 16368.22607421875, "l2": 19601.62109375, "loss": 16368.22607421875, "lr": 0.0001, "mag_l1": 11740.41748046875, "nrmse": 0.1850760206580162, "psnr": 31.325047492980957, "time": 0.24184500519186258, "total_loss": 16368.22607421875}
77
+ {"data_time": 5.776155740022659e-05, "eta_seconds": 80.38282867753878, "iteration": 1539, "l1": 14534.01904296875, "l2": 17129.625, "loss": 14534.01904296875, "lr": 0.0001, "mag_l1": 9170.3642578125, "nrmse": 0.1565786600112915, "psnr": 33.045658111572266, "time": 0.24163913005031645, "total_loss": 14534.01904296875}
78
+ {"data_time": 5.075358785688877e-05, "eta_seconds": 75.55146820121445, "iteration": 1559, "l1": 14640.92822265625, "l2": 17371.580078125, "loss": 14640.92822265625, "lr": 0.0001, "mag_l1": 9371.52734375, "nrmse": 0.15031981468200684, "psnr": 33.405982971191406, "time": 0.24189145979471505, "total_loss": 14640.92822265625}
79
+ {"data_time": 5.542556755244732e-05, "eta_seconds": 70.71965304901823, "iteration": 1579, "l1": 13991.0849609375, "l2": 16249.23291015625, "loss": 13991.0849609375, "lr": 0.0001, "mag_l1": 9093.2080078125, "nrmse": 0.16681111603975296, "psnr": 33.96403503417969, "time": 0.2420606310479343, "total_loss": 13991.0849609375}
80
+ {"data_time": 5.887309089303017e-05, "eta_seconds": 0.24168377043679357, "eval_time": 65.34714458091184, "iteration": 1599, "l1": 13840.16552734375, "l2": 16009.8115234375, "loss": 13840.16552734375, "lr": 0.0001, "mag_l1": 9263.2841796875, "mridata_knee_2019_val/val_nrmse": 0.18894533812999725, "mridata_knee_2019_val/val_nrmse_mag": 0.1166970506310463, "mridata_knee_2019_val/val_nrmse_mag_scan": 0.10710737854242325, "mridata_knee_2019_val/val_nrmse_scan": 0.17699891328811646, "mridata_knee_2019_val/val_psnr": 32.40996551513672, "mridata_knee_2019_val/val_psnr_mag": 36.686038970947266, "mridata_knee_2019_val/val_psnr_mag_scan": 44.65895080566406, "mridata_knee_2019_val/val_psnr_scan": 40.29226303100586, "mridata_knee_2019_val/val_ssim (Wang)": 0.8581580519676208, "mridata_knee_2019_val/val_ssim (Wang)_scan": 0.959481418132782, "nrmse": 0.16567719727754593, "psnr": 33.099552154541016, "time": 0.24213037663139403, "total_loss": 13840.16552734375}
test-data/test-exps/basic-cpu-orig/model_0000199.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:de3225771a594a12f770d17f710b212a8af982c0638a66526ea944fbd4884270
3
+ size 43108583
test-data/test-exps/basic-cpu-orig/model_0000399.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4bffbb1ff9227df02168477c1fc5038d1ffd3fb8137b00c90ee70fb0250f13bd
3
+ size 43108711
test-data/test-exps/basic-cpu-orig/model_0000599.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1ecda9ca5c43ef4d57035e22e7eaec8ba6e4a8f8e65989fcdfab7c37a20f5990
3
+ size 43108711
test-data/test-exps/basic-cpu-orig/model_0000799.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1026471e7810a79af4e24e62b5a9fc83a3ab53652bcd1d81b3511219905b6412
3
+ size 43108711
test-data/test-exps/basic-cpu-orig/model_0000999.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4320e2f39966c0d02839ca3e85f0658081e7cb12b31dd636a666830a48635a37
3
+ size 43108711
test-data/test-exps/basic-cpu-orig/model_0001199.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4c3e6a8f9313c84ba291173841abf1278acd06d5c264a48a97742daf2c9c8836
3
+ size 43108711
test-data/test-exps/basic-cpu-orig/model_0001399.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9d3d28debea6b212b013ab7ff232f32369c3d1925e3737ccdfc77525a5c03112
3
+ size 43108711
test-data/test-exps/basic-cpu-orig/model_0001599.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3e5b2ada26b055d1e28ba06f542a1ab1c2f14f8fb3b06a11128935616631ef11
3
+ size 43108711
test-data/test-exps/basic-cpu-orig/model_final.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5d3ef2c01ae9d2a6edfe50d123147693d71734568396d2fb772d2752dd5b52b6
3
+ size 43108711
test-data/test-exps/basic-cpu/config.yaml ADDED
@@ -0,0 +1,190 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ AUG_TEST:
2
+ UNDERSAMPLE:
3
+ ACCELERATIONS: &id001
4
+ - 6
5
+ AUG_TRAIN:
6
+ MOTION_P: 0.2
7
+ MRI_RECON:
8
+ AUG_SENSITIVITY_MAPS: true
9
+ SCHEDULER_P:
10
+ IGNORE: false
11
+ TRANSFORMS: []
12
+ NOISE_P: 0.2
13
+ UNDERSAMPLE:
14
+ ACCELERATIONS: *id001
15
+ CALIBRATION_SIZE: 20
16
+ CENTER_FRACTIONS: []
17
+ MAX_ATTEMPTS: 30
18
+ NAME: PoissonDiskMaskFunc
19
+ USE_MOTION: false
20
+ USE_NOISE: false
21
+ CUDNN_BENCHMARK: false
22
+ DATALOADER:
23
+ ALT_SAMPLER:
24
+ PERIOD_SUPERVISED: 1
25
+ PERIOD_UNSUPERVISED: 1
26
+ DATA_KEYS: []
27
+ DROP_LAST: true
28
+ FILTER:
29
+ BY: []
30
+ GROUP_SAMPLER:
31
+ AS_BATCH_SAMPLER: false
32
+ BATCH_BY: []
33
+ NUM_WORKERS: 8
34
+ PREFETCH_FACTOR: 2
35
+ SAMPLER_TRAIN: ''
36
+ SUBSAMPLE_TRAIN:
37
+ NUM_TOTAL: -1
38
+ NUM_TOTAL_BY_GROUP: []
39
+ NUM_UNDERSAMPLED: 0
40
+ NUM_VAL: -1
41
+ NUM_VAL_BY_GROUP: []
42
+ SEED: 1000
43
+ DATASETS:
44
+ TEST:
45
+ - mridata_knee_2019_test
46
+ TRAIN:
47
+ - mridata_knee_2019_train
48
+ VAL:
49
+ - mridata_knee_2019_val
50
+ DESCRIPTION:
51
+ BRIEF: ''
52
+ ENTITY_NAME: ss_recon
53
+ EXP_NAME: ''
54
+ PROJECT_NAME: ss_recon
55
+ TAGS: []
56
+ MODEL:
57
+ A2R:
58
+ META_ARCHITECTURE: GeneralizedUnrolledCNN
59
+ USE_SUPERVISED_CONSISTENCY: false
60
+ CONSISTENCY:
61
+ AUG:
62
+ MOTION:
63
+ RANGE:
64
+ - 0.2
65
+ - 0.5
66
+ SCHEDULER:
67
+ WARMUP_ITERS: 0
68
+ WARMUP_METHOD: ''
69
+ MRI_RECON:
70
+ AUG_SENSITIVITY_MAPS: true
71
+ SCHEDULER_P:
72
+ IGNORE: false
73
+ TRANSFORMS: []
74
+ NOISE:
75
+ MASK:
76
+ RHO: 1.0
77
+ SCHEDULER:
78
+ WARMUP_ITERS: 0
79
+ WARMUP_METHOD: ''
80
+ STD_DEV: &id002
81
+ - 1
82
+ LATENT_LOSS_NAME: mag_l1
83
+ LATENT_LOSS_WEIGHT: 0.1
84
+ LOSS_NAME: l1
85
+ LOSS_WEIGHT: 0.1
86
+ NUM_LATENT_LAYERS: 1
87
+ USE_CONSISTENCY: true
88
+ USE_LATENT: false
89
+ CS:
90
+ MAX_ITER: 200
91
+ REGULARIZATION: 0.005
92
+ DENOISING:
93
+ META_ARCHITECTURE: GeneralizedUnrolledCNN
94
+ NOISE:
95
+ STD_DEV: *id002
96
+ USE_FULLY_SAMPLED_TARGET: true
97
+ USE_FULLY_SAMPLED_TARGET_EVAL: null
98
+ DEVICE: cuda
99
+ M2R:
100
+ META_ARCHITECTURE: GeneralizedUnrolledCNN
101
+ USE_SUPERVISED_CONSISTENCY: false
102
+ META_ARCHITECTURE: GeneralizedUnrolledCNN
103
+ N2R:
104
+ META_ARCHITECTURE: GeneralizedUnrolledCNN
105
+ USE_SUPERVISED_CONSISTENCY: false
106
+ NM2R:
107
+ META_ARCHITECTURE: GeneralizedUnrolledCNN
108
+ USE_SUPERVISED_CONSISTENCY: false
109
+ NORMALIZER:
110
+ KEYWORDS: []
111
+ NAME: TopMagnitudeNormalizer
112
+ RECON_LOSS:
113
+ NAME: l1
114
+ RENORMALIZE_DATA: true
115
+ SEG:
116
+ ACTIVATION: sigmoid
117
+ CLASSES: []
118
+ INCLUDE_BACKGROUND: false
119
+ SSDU:
120
+ MASKER:
121
+ PARAMS: {}
122
+ META_ARCHITECTURE: GeneralizedUnrolledCNN
123
+ UNET:
124
+ BLOCK_ORDER:
125
+ - conv
126
+ - relu
127
+ - conv
128
+ - relu
129
+ - batchnorm
130
+ - dropout
131
+ CHANNELS: 32
132
+ DROPOUT: 0.0
133
+ IN_CHANNELS: 2
134
+ NORMALIZE: false
135
+ NUM_POOL_LAYERS: 4
136
+ OUT_CHANNELS: 2
137
+ UNROLLED:
138
+ BLOCK_ARCHITECTURE: ResNet
139
+ CONV_BLOCK:
140
+ ACTIVATION: relu
141
+ NORM: none
142
+ NORM_AFFINE: false
143
+ ORDER:
144
+ - norm
145
+ - act
146
+ - drop
147
+ - conv
148
+ DROPOUT: 0.0
149
+ FIX_STEP_SIZE: false
150
+ KERNEL_SIZE:
151
+ - 3
152
+ NUM_EMAPS: 1
153
+ NUM_FEATURES: 128
154
+ NUM_RESBLOCKS: 2
155
+ NUM_UNROLLED_STEPS: 8
156
+ PADDING: ''
157
+ SHARE_WEIGHTS: false
158
+ WEIGHTS: ''
159
+ OUTPUT_DIR: "results://meddlr/tests/basic-cpu"
160
+ SEED: -1
161
+ SOLVER:
162
+ BASE_LR: 0.0001
163
+ BIAS_LR_FACTOR: 1.0
164
+ CHECKPOINT_PERIOD: 200
165
+ GAMMA: 0.1
166
+ GRAD_ACCUM_ITERS: 1
167
+ LR_SCHEDULER_NAME: WarmupMultiStepLR
168
+ MAX_ITER: 1600
169
+ MOMENTUM: 0.9
170
+ OPTIMIZER: Adam
171
+ STEPS:
172
+ - 30000
173
+ TEST_BATCH_SIZE: 2
174
+ TRAIN_BATCH_SIZE: 1
175
+ WARMUP_FACTOR: 0.001
176
+ WARMUP_ITERS: 1000
177
+ WARMUP_METHOD: linear
178
+ WEIGHT_DECAY: 0.0001
179
+ WEIGHT_DECAY_BIAS: 0.0001
180
+ WEIGHT_DECAY_NORM: 0.0
181
+ TEST:
182
+ EVAL_PERIOD: 200
183
+ EXPECTED_RESULTS: []
184
+ FLUSH_PERIOD: 0
185
+ VAL_AS_TEST: true
186
+ VAL_METRICS:
187
+ RECON: []
188
+ TIME_SCALE: iter
189
+ VERSION: 1
190
+ VIS_PERIOD: 20
test-data/test-exps/basic-cpu/last_checkpoint ADDED
@@ -0,0 +1 @@
 
 
1
+ model_final.pth
test-data/test-exps/basic-cpu/metrics.json ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {"data_time": 5.8724312111735344e-05, "eta_seconds": 359.7661029919982, "iteration": 19, "l1": 100222.734375, "l2": 105335.453125, "loss": 100222.734375, "lr": 1.9981e-06, "mag_l1": 45874.640625, "nrmse": 0.9498541057109833, "psnr": 17.65980339050293, "time": 0.2275560423731804, "total_loss": 100222.734375}
2
+ {"data_time": 6.18775375187397e-05, "eta_seconds": 355.79611470457166, "iteration": 39, "l1": 31516.1572265625, "l2": 36795.162109375, "loss": 31516.1572265625, "lr": 3.9961e-06, "mag_l1": 19095.89453125, "nrmse": 0.35987813770771027, "psnr": 24.924463272094727, "time": 0.2281585254240781, "total_loss": 31516.1572265625}
3
+ {"data_time": 6.220047362148762e-05, "eta_seconds": 351.65974596049637, "iteration": 59, "l1": 27504.994140625, "l2": 31594.138671875, "loss": 27504.994140625, "lr": 5.9941e-06, "mag_l1": 17842.1787109375, "nrmse": 0.34179846942424774, "psnr": 25.010881423950195, "time": 0.2288526559714228, "total_loss": 27504.994140625}
4
+ {"data_time": 6.496254354715347e-05, "eta_seconds": 347.5765354356263, "iteration": 79, "l1": 24592.9775390625, "l2": 28486.150390625, "loss": 24592.9775390625, "lr": 7.992100000000001e-06, "mag_l1": 14971.4970703125, "nrmse": 0.27779413759708405, "psnr": 28.802139282226562, "time": 0.229887415189296, "total_loss": 24592.9775390625}
5
+ {"data_time": 5.4380856454372406e-05, "eta_seconds": 343.69499159487896, "iteration": 99, "l1": 24272.966796875, "l2": 28383.0615234375, "loss": 24272.966796875, "lr": 9.990100000000001e-06, "mag_l1": 15012.3876953125, "nrmse": 0.2517841160297394, "psnr": 28.905832290649414, "time": 0.23037182842381299, "total_loss": 24272.966796875}
6
+ {"data_time": 5.890103057026863e-05, "eta_seconds": 339.6647950960323, "iteration": 119, "l1": 21447.892578125, "l2": 24722.8623046875, "loss": 21447.892578125, "lr": 1.1988100000000001e-05, "mag_l1": 12709.44140625, "nrmse": 0.2571380138397217, "psnr": 28.92680072784424, "time": 0.2305097128264606, "total_loss": 21447.892578125}
7
+ {"data_time": 5.4702628403902054e-05, "eta_seconds": 335.8631269899197, "iteration": 139, "l1": 21284.9814453125, "l2": 24685.9150390625, "loss": 21284.9814453125, "lr": 1.3986100000000001e-05, "mag_l1": 12787.41162109375, "nrmse": 0.22890224307775497, "psnr": 29.934592247009277, "time": 0.23098056414164603, "total_loss": 21284.9814453125}
8
+ {"data_time": 5.424278788268566e-05, "eta_seconds": 331.58625689544715, "iteration": 159, "l1": 22184.0244140625, "l2": 26129.3408203125, "loss": 22184.0244140625, "lr": 1.59841e-05, "mag_l1": 13380.330078125, "nrmse": 0.21457883715629578, "psnr": 30.66695499420166, "time": 0.231865752954036, "total_loss": 22184.0244140625}
9
+ {"data_time": 5.870312452316284e-05, "eta_seconds": 327.49997398629785, "iteration": 179, "l1": 20008.4853515625, "l2": 23381.0966796875, "loss": 20008.4853515625, "lr": 1.79821e-05, "mag_l1": 11690.47705078125, "nrmse": 0.21840672194957733, "psnr": 31.178823471069336, "time": 0.2323051393032074, "total_loss": 20008.4853515625}
10
+ {"data_time": 5.784607492387295e-05, "eta_seconds": 781.7232149597257, "eval_time": 65.50886672688648, "iteration": 199, "l1": 18439.4609375, "l2": 21302.6396484375, "loss": 18439.4609375, "lr": 1.9980100000000002e-05, "mag_l1": 10959.69580078125, "mridata_knee_2019_val/val_nrmse": 0.21119296550750732, "mridata_knee_2019_val/val_nrmse_mag": 0.14042188227176666, "mridata_knee_2019_val/val_nrmse_mag_scan": 0.13098075985908508, "mridata_knee_2019_val/val_nrmse_scan": 0.19516313076019287, "mridata_knee_2019_val/val_psnr": 31.50898551940918, "mridata_knee_2019_val/val_psnr_mag": 35.01776885986328, "mridata_knee_2019_val/val_psnr_mag_scan": 42.91193389892578, "mridata_knee_2019_val/val_psnr_scan": 39.45012664794922, "mridata_knee_2019_val/val_ssim (Wang)": 0.8313655257225037, "mridata_knee_2019_val/val_ssim (Wang)_scan": 0.9571136832237244, "nrmse": 0.20757121592760086, "psnr": 31.32909393310547, "time": 0.23300355160608888, "total_loss": 18439.4609375}
11
+ {"data_time": 6.24675303697586e-05, "eta_seconds": 777.5016167950816, "iteration": 219, "l1": 17119.5302734375, "l2": 19805.7939453125, "loss": 17119.5302734375, "lr": 2.1978100000000002e-05, "mag_l1": 10015.462890625, "nrmse": 0.1938774362206459, "psnr": 30.70321273803711, "time": 0.23612941708415747, "total_loss": 17119.5302734375}
12
+ {"data_time": 5.823792889714241e-05, "eta_seconds": 773.430268256925, "iteration": 239, "l1": 16810.18359375, "l2": 19512.7353515625, "loss": 16810.18359375, "lr": 2.3976100000000002e-05, "mag_l1": 10032.50244140625, "nrmse": 0.19441143423318863, "psnr": 32.321815490722656, "time": 0.23683945694938302, "total_loss": 16810.18359375}
13
+ {"data_time": 5.306210368871689e-05, "eta_seconds": 769.3867072798312, "iteration": 259, "l1": 15697.525390625, "l2": 18000.83984375, "loss": 15697.525390625, "lr": 2.5974100000000003e-05, "mag_l1": 9294.5244140625, "nrmse": 0.18325212597846985, "psnr": 32.5817756652832, "time": 0.23687181528657675, "total_loss": 15697.525390625}
14
+ {"data_time": 5.4574571549892426e-05, "eta_seconds": 765.0014682286419, "iteration": 279, "l1": 16743.5009765625, "l2": 19644.951171875, "loss": 16743.5009765625, "lr": 2.7972100000000006e-05, "mag_l1": 9826.63916015625, "nrmse": 0.178735613822937, "psnr": 32.362422943115234, "time": 0.2371388718020171, "total_loss": 16743.5009765625}
15
+ {"data_time": 5.9471698477864265e-05, "eta_seconds": 760.7914731586352, "iteration": 299, "l1": 18045.7080078125, "l2": 21337.326171875, "loss": 18045.7080078125, "lr": 2.99701e-05, "mag_l1": 11358.94921875, "nrmse": 0.1879516988992691, "psnr": 33.47402000427246, "time": 0.23752471711486578, "total_loss": 18045.7080078125}
16
+ {"data_time": 5.260808393359184e-05, "eta_seconds": 756.4834678766783, "iteration": 319, "l1": 16170.23876953125, "l2": 18840.09765625, "loss": 16170.23876953125, "lr": 3.19681e-05, "mag_l1": 10087.16552734375, "nrmse": 0.17491864413022995, "psnr": 33.47911071777344, "time": 0.23755790293216705, "total_loss": 16170.23876953125}
17
+ {"data_time": 6.039696745574474e-05, "eta_seconds": 752.3012556107715, "iteration": 339, "l1": 16581.4560546875, "l2": 19720.4150390625, "loss": 16581.4560546875, "lr": 3.396610000000001e-05, "mag_l1": 9956.6455078125, "nrmse": 0.16807971894741058, "psnr": 32.520633697509766, "time": 0.23822321253828704, "total_loss": 16581.4560546875}
18
+ {"data_time": 5.4969219490885735e-05, "eta_seconds": 748.101056287298, "iteration": 359, "l1": 17071.638671875, "l2": 20010.2890625, "loss": 17071.638671875, "lr": 3.5964100000000004e-05, "mag_l1": 9391.9033203125, "nrmse": 0.18630316108465195, "psnr": 32.44930362701416, "time": 0.23855405417270958, "total_loss": 17071.638671875}
19
+ {"data_time": 6.400910206139088e-05, "eta_seconds": 745.4217541089747, "iteration": 379, "l1": 16226.62060546875, "l2": 19523.4189453125, "loss": 16226.62060546875, "lr": 3.79621e-05, "mag_l1": 9416.60107421875, "nrmse": 0.17075738310813904, "psnr": 33.098426818847656, "time": 0.23870971496216953, "total_loss": 16226.62060546875}
20
+ {"data_time": 6.912671960890293e-05, "eta_seconds": 675.1914435480721, "eval_time": 65.21572437603027, "iteration": 399, "l1": 14768.04931640625, "l2": 17055.80078125, "loss": 14768.04931640625, "lr": 3.9960100000000004e-05, "mag_l1": 9220.15283203125, "mridata_knee_2019_val/val_nrmse": 0.1757533848285675, "mridata_knee_2019_val/val_nrmse_mag": 0.12175821512937546, "mridata_knee_2019_val/val_nrmse_mag_scan": 0.11281701177358627, "mridata_knee_2019_val/val_nrmse_scan": 0.16258126497268677, "mridata_knee_2019_val/val_psnr": 33.09370422363281, "mridata_knee_2019_val/val_psnr_mag": 36.27151870727539, "mridata_knee_2019_val/val_psnr_mag_scan": 44.20783233642578, "mridata_knee_2019_val/val_psnr_scan": 41.0316162109375, "mridata_knee_2019_val/val_ssim (Wang)": 0.8601711392402649, "mridata_knee_2019_val/val_ssim (Wang)_scan": 0.9629950523376465, "nrmse": 0.16873526573181152, "psnr": 32.80202674865723, "time": 0.2387961558997631, "total_loss": 14768.04931640625}
21
+ {"data_time": 7.513235323131084e-05, "eta_seconds": 671.0235092118382, "iteration": 419, "l1": 14830.16259765625, "l2": 17615.15625, "loss": 14830.16259765625, "lr": 4.19581e-05, "mag_l1": 9204.087890625, "nrmse": 0.1725487932562828, "psnr": 30.818349838256836, "time": 0.23959360411390662, "total_loss": 14830.16259765625}
22
+ {"data_time": 5.370704457163811e-05, "eta_seconds": 666.754473348381, "iteration": 439, "l1": 16323.92529296875, "l2": 20057.7763671875, "loss": 16323.92529296875, "lr": 4.39561e-05, "mag_l1": 10422.1875, "nrmse": 0.16905327886343002, "psnr": 32.574934005737305, "time": 0.23974267323501408, "total_loss": 16323.92529296875}
23
+ {"data_time": 5.7570869103074074e-05, "eta_seconds": 662.2949810451828, "iteration": 459, "l1": 14716.6279296875, "l2": 17047.45703125, "loss": 14716.6279296875, "lr": 4.595410000000001e-05, "mag_l1": 9128.31640625, "nrmse": 0.17508791387081146, "psnr": 32.69980430603027, "time": 0.23981898836791515, "total_loss": 14716.6279296875}
24
+ {"data_time": 5.569588392972946e-05, "eta_seconds": 657.7139136565384, "iteration": 479, "l1": 15069.6884765625, "l2": 17629.1826171875, "loss": 15069.6884765625, "lr": 4.79521e-05, "mag_l1": 9372.9423828125, "nrmse": 0.1709083691239357, "psnr": 32.34677314758301, "time": 0.24022742290981114, "total_loss": 15069.6884765625}
25
+ {"data_time": 5.885818973183632e-05, "eta_seconds": 653.1895788100082, "iteration": 499, "l1": 14391.693359375, "l2": 16699.546875, "loss": 14391.693359375, "lr": 4.99501e-05, "mag_l1": 8994.11083984375, "nrmse": 0.1650351881980896, "psnr": 31.85970973968506, "time": 0.24092645151540637, "total_loss": 14391.693359375}
26
+ {"data_time": 5.716690793633461e-05, "eta_seconds": 648.6794284288771, "iteration": 519, "l1": 14284.78369140625, "l2": 16909.150390625, "loss": 14284.78369140625, "lr": 5.19481e-05, "mag_l1": 9106.72412109375, "nrmse": 0.1907998025417328, "psnr": 31.51411724090576, "time": 0.24120248132385314, "total_loss": 14284.78369140625}
27
+ {"data_time": 5.3374795243144035e-05, "eta_seconds": 644.0714051092509, "iteration": 539, "l1": 15812.8369140625, "l2": 18632.939453125, "loss": 15812.8369140625, "lr": 5.394610000000001e-05, "mag_l1": 10317.34521484375, "nrmse": 0.18836764246225357, "psnr": 32.00579261779785, "time": 0.24083498888649046, "total_loss": 15812.8369140625}
28
+ {"data_time": 5.93625009059906e-05, "eta_seconds": 639.4391512828879, "iteration": 559, "l1": 15930.27685546875, "l2": 19070.7373046875, "loss": 15930.27685546875, "lr": 5.594410000000001e-05, "mag_l1": 9948.8251953125, "nrmse": 0.16790058463811874, "psnr": 33.792518615722656, "time": 0.24105555634014308, "total_loss": 15930.27685546875}
29
+ {"data_time": 6.131036207079887e-05, "eta_seconds": 634.8660601780284, "iteration": 579, "l1": 15495.3310546875, "l2": 18695.056640625, "loss": 15495.3310546875, "lr": 5.79421e-05, "mag_l1": 9255.50146484375, "nrmse": 0.17250918596982956, "psnr": 32.08197212219238, "time": 0.23958933143876493, "total_loss": 15495.3310546875}
30
+ {"data_time": 5.2372924983501434e-05, "eta_seconds": 564.3750415984541, "eval_time": 65.27971871802583, "iteration": 599, "l1": 13945.58984375, "l2": 16040.55419921875, "loss": 13945.58984375, "lr": 5.99401e-05, "mag_l1": 8719.3701171875, "mridata_knee_2019_val/val_nrmse": 0.21740230917930603, "mridata_knee_2019_val/val_nrmse_mag": 0.1690828800201416, "mridata_knee_2019_val/val_nrmse_mag_scan": 0.1621265858411789, "mridata_knee_2019_val/val_nrmse_scan": 0.20664377510547638, "mridata_knee_2019_val/val_psnr": 31.13789939880371, "mridata_knee_2019_val/val_psnr_mag": 33.29239273071289, "mridata_knee_2019_val/val_psnr_mag_scan": 41.054168701171875, "mridata_knee_2019_val/val_psnr_scan": 38.9461669921875, "mridata_knee_2019_val/val_ssim (Wang)": 0.8669157028198242, "mridata_knee_2019_val/val_ssim (Wang)_scan": 0.962317705154419, "nrmse": 0.17693433165550232, "psnr": 31.752036094665527, "time": 0.23968674917705357, "total_loss": 13945.58984375}
31
+ {"data_time": 6.620865315198898e-05, "eta_seconds": 559.7923359277193, "iteration": 619, "l1": 16922.677734375, "l2": 20442.275390625, "loss": 16922.677734375, "lr": 6.19381e-05, "mag_l1": 10771.60205078125, "nrmse": 0.1732729971408844, "psnr": 31.959287643432617, "time": 0.2412481210194528, "total_loss": 16922.677734375}
32
+ {"data_time": 6.0440972447395325e-05, "eta_seconds": 555.2091883267276, "iteration": 639, "l1": 14901.4384765625, "l2": 17548.1337890625, "loss": 14901.4384765625, "lr": 6.39361e-05, "mag_l1": 9096.962890625, "nrmse": 0.1762162446975708, "psnr": 31.8342342376709, "time": 0.24096761411055923, "total_loss": 14901.4384765625}
33
+ {"data_time": 6.218347698450089e-05, "eta_seconds": 550.6653766552918, "iteration": 659, "l1": 14073.5859375, "l2": 16592.2099609375, "loss": 14073.5859375, "lr": 6.593410000000002e-05, "mag_l1": 9030.03076171875, "nrmse": 0.15368197858333588, "psnr": 33.77932357788086, "time": 0.24131403397768736, "total_loss": 14073.5859375}
34
+ {"data_time": 6.726104766130447e-05, "eta_seconds": 546.017190946266, "iteration": 679, "l1": 16618.61865234375, "l2": 19782.0, "loss": 16618.61865234375, "lr": 6.79321e-05, "mag_l1": 9106.97998046875, "nrmse": 0.23360496759414673, "psnr": 30.814631462097168, "time": 0.24130445928312838, "total_loss": 16618.61865234375}
35
+ {"data_time": 5.734688602387905e-05, "eta_seconds": 541.3740438017994, "iteration": 699, "l1": 17848.931640625, "l2": 21452.94140625, "loss": 17848.931640625, "lr": 6.99301e-05, "mag_l1": 9782.14990234375, "nrmse": 0.19186626374721527, "psnr": 31.149123191833496, "time": 0.24131983146071434, "total_loss": 17848.931640625}
36
+ {"data_time": 6.245030090212822e-05, "eta_seconds": 536.7700682769064, "iteration": 719, "l1": 16070.6552734375, "l2": 19046.9248046875, "loss": 16070.6552734375, "lr": 7.19281e-05, "mag_l1": 10046.9697265625, "nrmse": 0.17738544940948486, "psnr": 32.256874084472656, "time": 0.2416476490907371, "total_loss": 16070.6552734375}
37
+ {"data_time": 5.751941353082657e-05, "eta_seconds": 532.09958262695, "iteration": 739, "l1": 16163.8388671875, "l2": 19273.8505859375, "loss": 16163.8388671875, "lr": 7.39261e-05, "mag_l1": 10863.3994140625, "nrmse": 0.17159220576286316, "psnr": 32.226511001586914, "time": 0.24180498835630715, "total_loss": 16163.8388671875}
38
+ {"data_time": 6.0913385823369026e-05, "eta_seconds": 527.4070877090562, "iteration": 759, "l1": 15517.578125, "l2": 18530.16796875, "loss": 15517.578125, "lr": 7.592410000000001e-05, "mag_l1": 10333.841796875, "nrmse": 0.17064187675714493, "psnr": 32.9786262512207, "time": 0.24176917085424066, "total_loss": 15517.578125}
39
+ {"data_time": 5.797506310045719e-05, "eta_seconds": 522.7074842385482, "iteration": 779, "l1": 15658.6162109375, "l2": 18578.34375, "loss": 15658.6162109375, "lr": 7.792210000000001e-05, "mag_l1": 10350.3935546875, "nrmse": 0.19206879287958145, "psnr": 31.120914459228516, "time": 0.2415855524595827, "total_loss": 15658.6162109375}
40
+ {"data_time": 6.991904228925705e-05, "eta_seconds": 452.5696406052448, "eval_time": 65.14025392197073, "iteration": 799, "l1": 15171.013671875, "l2": 17667.1025390625, "loss": 15171.013671875, "lr": 7.992010000000001e-05, "mag_l1": 10075.4072265625, "mridata_knee_2019_val/val_nrmse": 0.17539028823375702, "mridata_knee_2019_val/val_nrmse_mag": 0.12004988640546799, "mridata_knee_2019_val/val_nrmse_mag_scan": 0.11052785813808441, "mridata_knee_2019_val/val_nrmse_scan": 0.16266724467277527, "mridata_knee_2019_val/val_psnr": 33.0992317199707, "mridata_knee_2019_val/val_psnr_mag": 36.42616271972656, "mridata_knee_2019_val/val_psnr_mag_scan": 44.3879508972168, "mridata_knee_2019_val/val_psnr_scan": 41.02751922607422, "mridata_knee_2019_val/val_ssim (Wang)": 0.8660423755645752, "mridata_knee_2019_val/val_ssim (Wang)_scan": 0.9637445211410522, "nrmse": 0.18343299627304077, "psnr": 32.41549491882324, "time": 0.24183343723416328, "total_loss": 15171.013671875}
41
+ {"data_time": 7.512141019105911e-05, "eta_seconds": 447.9036651540082, "iteration": 819, "l1": 14583.26953125, "l2": 17043.158203125, "loss": 14583.26953125, "lr": 8.19181e-05, "mag_l1": 9485.7109375, "nrmse": 0.16736038029193878, "psnr": 32.584394454956055, "time": 0.24138905154541135, "total_loss": 14583.26953125}
42
+ {"data_time": 6.399606354534626e-05, "eta_seconds": 443.1866772051435, "iteration": 839, "l1": 14240.29541015625, "l2": 16422.294921875, "loss": 14240.29541015625, "lr": 8.39161e-05, "mag_l1": 9222.408203125, "nrmse": 0.16300085186958313, "psnr": 33.409629821777344, "time": 0.24130377755500376, "total_loss": 14240.29541015625}
43
+ {"data_time": 6.631691940128803e-05, "eta_seconds": 438.4512874945067, "iteration": 859, "l1": 15098.02978515625, "l2": 17780.9443359375, "loss": 15098.02978515625, "lr": 8.59141e-05, "mag_l1": 9713.8837890625, "nrmse": 0.16045530885457993, "psnr": 33.81159973144531, "time": 0.24177287705242634, "total_loss": 15098.02978515625}
44
+ {"data_time": 5.9098005294799805e-05, "eta_seconds": 433.70834848470986, "iteration": 879, "l1": 15402.22998046875, "l2": 18384.1494140625, "loss": 15402.22998046875, "lr": 8.791210000000002e-05, "mag_l1": 9694.9169921875, "nrmse": 0.1808141991496086, "psnr": 31.314088821411133, "time": 0.2416655495762825, "total_loss": 15402.22998046875}
45
+ {"data_time": 6.526568904519081e-05, "eta_seconds": 428.9955665911548, "iteration": 899, "l1": 14225.3046875, "l2": 16831.7080078125, "loss": 14225.3046875, "lr": 8.99101e-05, "mag_l1": 8984.27685546875, "nrmse": 0.16628511250019073, "psnr": 33.05383110046387, "time": 0.24178943410515785, "total_loss": 14225.3046875}
46
+ {"data_time": 5.5674463510513306e-05, "eta_seconds": 424.2737150671892, "iteration": 919, "l1": 13569.4482421875, "l2": 15698.2265625, "loss": 13569.4482421875, "lr": 9.190810000000001e-05, "mag_l1": 8879.82275390625, "nrmse": 0.17601968348026276, "psnr": 32.2679443359375, "time": 0.24159764288924634, "total_loss": 13569.4482421875}
47
+ {"data_time": 5.8833975344896317e-05, "eta_seconds": 419.53274534014054, "iteration": 939, "l1": 14107.779296875, "l2": 16392.865234375, "loss": 14107.779296875, "lr": 9.39061e-05, "mag_l1": 9469.955078125, "nrmse": 0.1552620753645897, "psnr": 33.6201286315918, "time": 0.24200359848327935, "total_loss": 14107.779296875}
48
+ {"data_time": 6.517861038446426e-05, "eta_seconds": 414.78292379016057, "iteration": 959, "l1": 14675.75830078125, "l2": 17464.642578125, "loss": 14675.75830078125, "lr": 9.59041e-05, "mag_l1": 9506.83740234375, "nrmse": 0.1567152440547943, "psnr": 33.60637664794922, "time": 0.24204439693130553, "total_loss": 14675.75830078125}
49
+ {"data_time": 5.8105913922190666e-05, "eta_seconds": 410.0535108183976, "iteration": 979, "l1": 14544.49365234375, "l2": 16932.5185546875, "loss": 14544.49365234375, "lr": 9.79021e-05, "mag_l1": 9430.4189453125, "nrmse": 0.1516100913286209, "psnr": 34.3247127532959, "time": 0.24203661270439625, "total_loss": 14544.49365234375}
50
+ {"data_time": 5.2456045523285866e-05, "eta_seconds": 340.6981165597681, "eval_time": 65.67177260806784, "iteration": 999, "l1": 14674.8818359375, "l2": 17385.3017578125, "loss": 14674.8818359375, "lr": 9.990010000000001e-05, "mag_l1": 9422.5478515625, "mridata_knee_2019_val/val_nrmse": 0.1754719614982605, "mridata_knee_2019_val/val_nrmse_mag": 0.13826291263103485, "mridata_knee_2019_val/val_nrmse_mag_scan": 0.12896385788917542, "mridata_knee_2019_val/val_nrmse_scan": 0.16278696060180664, "mridata_knee_2019_val/val_psnr": 33.088985443115234, "mridata_knee_2019_val/val_psnr_mag": 35.132991790771484, "mridata_knee_2019_val/val_psnr_mag_scan": 43.045326232910156, "mridata_knee_2019_val/val_psnr_scan": 41.02001953125, "mridata_knee_2019_val/val_ssim (Wang)": 0.8101894855499268, "mridata_knee_2019_val/val_ssim (Wang)_scan": 0.9319007396697998, "nrmse": 0.15127498656511307, "psnr": 34.61575889587402, "time": 0.24188144388608634, "total_loss": 14674.8818359375}
51
+ {"data_time": 5.9067970141768456e-05, "eta_seconds": 335.97087895008735, "iteration": 1019, "l1": 14348.8984375, "l2": 16938.6728515625, "loss": 14348.8984375, "lr": 0.0001, "mag_l1": 9765.14794921875, "nrmse": 0.17587070167064667, "psnr": 32.656362533569336, "time": 0.24134634691290557, "total_loss": 14348.8984375}
52
+ {"data_time": 6.118882447481155e-05, "eta_seconds": 331.23924408643506, "iteration": 1039, "l1": 14988.1015625, "l2": 18155.8056640625, "loss": 14988.1015625, "lr": 0.0001, "mag_l1": 10476.525390625, "nrmse": 0.18506795167922974, "psnr": 31.962905883789062, "time": 0.241583890048787, "total_loss": 14988.1015625}
53
+ {"data_time": 6.161979399621487e-05, "eta_seconds": 326.47347527882084, "iteration": 1059, "l1": 17364.37109375, "l2": 20799.6396484375, "loss": 17364.37109375, "lr": 0.0001, "mag_l1": 11414.58203125, "nrmse": 0.18761789798736572, "psnr": 31.90066146850586, "time": 0.24163383385166526, "total_loss": 17364.37109375}
54
+ {"data_time": 6.794603541493416e-05, "eta_seconds": 321.7045300004538, "iteration": 1079, "l1": 14381.8115234375, "l2": 16754.91796875, "loss": 14381.8115234375, "lr": 0.0001, "mag_l1": 10022.2314453125, "nrmse": 0.17259720712900162, "psnr": 32.45737075805664, "time": 0.24146606703288853, "total_loss": 14381.8115234375}
55
+ {"data_time": 6.646313704550266e-05, "eta_seconds": 316.9261127819773, "iteration": 1099, "l1": 14260.65185546875, "l2": 16611.7568359375, "loss": 14260.65185546875, "lr": 0.0001, "mag_l1": 9162.88037109375, "nrmse": 0.15355423092842102, "psnr": 32.858924865722656, "time": 0.24221350206062198, "total_loss": 14260.65185546875}
56
+ {"data_time": 6.980751641094685e-05, "eta_seconds": 312.15706994733773, "iteration": 1119, "l1": 14124.47607421875, "l2": 16373.28759765625, "loss": 14124.47607421875, "lr": 0.0001, "mag_l1": 9208.14208984375, "nrmse": 0.1590411514043808, "psnr": 33.97137260437012, "time": 0.24161972617730498, "total_loss": 14124.47607421875}
57
+ {"data_time": 6.412551738321781e-05, "eta_seconds": 307.36848895973526, "iteration": 1139, "l1": 13414.080078125, "l2": 15577.26513671875, "loss": 13414.080078125, "lr": 0.0001, "mag_l1": 9122.6162109375, "nrmse": 0.1631639003753662, "psnr": 32.320106506347656, "time": 0.24181801592931151, "total_loss": 13414.080078125}
58
+ {"data_time": 5.296152085065842e-05, "eta_seconds": 302.5673929194454, "iteration": 1159, "l1": 14458.33837890625, "l2": 16905.0712890625, "loss": 14458.33837890625, "lr": 0.0001, "mag_l1": 9457.0810546875, "nrmse": 0.15660183131694794, "psnr": 32.847551345825195, "time": 0.24181626876816154, "total_loss": 14458.33837890625}
59
+ {"data_time": 5.789846181869507e-05, "eta_seconds": 297.7640440831892, "iteration": 1179, "l1": 13799.36181640625, "l2": 16046.197265625, "loss": 13799.36181640625, "lr": 0.0001, "mag_l1": 8992.48388671875, "nrmse": 0.15394268929958344, "psnr": 33.42691421508789, "time": 0.2419192420784384, "total_loss": 13799.36181640625}
60
+ {"data_time": 5.281809717416763e-05, "eta_seconds": 228.20380558352917, "eval_time": 65.78305590897799, "iteration": 1199, "l1": 14033.81201171875, "l2": 16493.9228515625, "loss": 14033.81201171875, "lr": 0.0001, "mag_l1": 9655.1611328125, "mridata_knee_2019_val/val_nrmse": 0.18173597753047943, "mridata_knee_2019_val/val_nrmse_mag": 0.1352604776620865, "mridata_knee_2019_val/val_nrmse_mag_scan": 0.12665021419525146, "mridata_knee_2019_val/val_nrmse_scan": 0.16953781247138977, "mridata_knee_2019_val/val_psnr": 32.761844635009766, "mridata_knee_2019_val/val_psnr_mag": 35.311279296875, "mridata_knee_2019_val/val_psnr_mag_scan": 43.202449798583984, "mridata_knee_2019_val/val_psnr_scan": 40.666847229003906, "mridata_knee_2019_val/val_ssim (Wang)": 0.8625695109367371, "mridata_knee_2019_val/val_ssim (Wang)_scan": 0.9606165885925293, "nrmse": 0.16332802176475525, "psnr": 33.947330474853516, "time": 0.24200542853213847, "total_loss": 14033.81201171875}
61
+ {"data_time": 5.591195076704025e-05, "eta_seconds": 223.38669030740857, "iteration": 1219, "l1": 15478.92529296875, "l2": 18354.0029296875, "loss": 15478.92529296875, "lr": 0.0001, "mag_l1": 10046.9384765625, "nrmse": 0.1664258986711502, "psnr": 32.79239273071289, "time": 0.2412805170752108, "total_loss": 15478.92529296875}
62
+ {"data_time": 5.942396819591522e-05, "eta_seconds": 218.57006236631423, "iteration": 1239, "l1": 14415.25830078125, "l2": 16793.048828125, "loss": 14415.25830078125, "lr": 0.0001, "mag_l1": 9219.0849609375, "nrmse": 0.15688494592905045, "psnr": 33.95304489135742, "time": 0.24145523342303932, "total_loss": 14415.25830078125}
63
+ {"data_time": 6.720144301652908e-05, "eta_seconds": 213.75141527038068, "iteration": 1259, "l1": 14165.77587890625, "l2": 16886.115234375, "loss": 14165.77587890625, "lr": 0.0001, "mag_l1": 9268.1455078125, "nrmse": 0.14884252101182938, "psnr": 33.326005935668945, "time": 0.2413755594752729, "total_loss": 14165.77587890625}
64
+ {"data_time": 5.9649115428328514e-05, "eta_seconds": 208.9349760042969, "iteration": 1279, "l1": 14173.21240234375, "l2": 16730.4501953125, "loss": 14173.21240234375, "lr": 0.0001, "mag_l1": 9147.1650390625, "nrmse": 0.14594492316246033, "psnr": 35.1673583984375, "time": 0.2417582841590047, "total_loss": 14173.21240234375}
65
+ {"data_time": 5.298107862472534e-05, "eta_seconds": 204.11623431602493, "iteration": 1299, "l1": 13085.43359375, "l2": 15053.86474609375, "loss": 13085.43359375, "lr": 0.0001, "mag_l1": 8664.46337890625, "nrmse": 0.16419310122728348, "psnr": 32.35848426818848, "time": 0.24177921446971595, "total_loss": 13085.43359375}
66
+ {"data_time": 5.486304871737957e-05, "eta_seconds": 199.29702514316887, "iteration": 1319, "l1": 12723.986328125, "l2": 14628.30517578125, "loss": 12723.986328125, "lr": 0.0001, "mag_l1": 8421.12646484375, "nrmse": 0.14692717045545578, "psnr": 33.99099349975586, "time": 0.24154443060979247, "total_loss": 12723.986328125}
67
+ {"data_time": 6.129313260316849e-05, "eta_seconds": 194.47346941498108, "iteration": 1339, "l1": 15378.06591796875, "l2": 18187.669921875, "loss": 15378.06591796875, "lr": 0.0001, "mag_l1": 9888.9521484375, "nrmse": 0.1872420758008957, "psnr": 32.32719421386719, "time": 0.24176223343238235, "total_loss": 15378.06591796875}
68
+ {"data_time": 6.481958553195e-05, "eta_seconds": 189.64989149640314, "iteration": 1359, "l1": 14171.919921875, "l2": 16596.2197265625, "loss": 14171.919921875, "lr": 0.0001, "mag_l1": 9225.52783203125, "nrmse": 0.15043732523918152, "psnr": 33.77565574645996, "time": 0.24172992445528507, "total_loss": 14171.919921875}
69
+ {"data_time": 6.266427226364613e-05, "eta_seconds": 184.82441097451374, "iteration": 1379, "l1": 14608.1142578125, "l2": 17209.912109375, "loss": 14608.1142578125, "lr": 0.0001, "mag_l1": 9494.59619140625, "nrmse": 0.1493740975856781, "psnr": 33.855735778808594, "time": 0.24200989259406924, "total_loss": 14608.1142578125}
70
+ {"data_time": 6.442610174417496e-05, "eta_seconds": 114.19009395944886, "eval_time": 65.50695857033134, "iteration": 1399, "l1": 14015.1376953125, "l2": 16584.1767578125, "loss": 14015.1376953125, "lr": 0.0001, "mag_l1": 9409.0576171875, "mridata_knee_2019_val/val_nrmse": 0.1644728183746338, "mridata_knee_2019_val/val_nrmse_mag": 0.11962752044200897, "mridata_knee_2019_val/val_nrmse_mag_scan": 0.10959033668041229, "mridata_knee_2019_val/val_nrmse_scan": 0.15130001306533813, "mridata_knee_2019_val/val_psnr": 33.69352722167969, "mridata_knee_2019_val/val_psnr_mag": 36.47991180419922, "mridata_knee_2019_val/val_psnr_mag_scan": 44.46525192260742, "mridata_knee_2019_val/val_psnr_scan": 41.65702438354492, "mridata_knee_2019_val/val_ssim (Wang)": 0.8328330516815186, "mridata_knee_2019_val/val_ssim (Wang)_scan": 0.9443427920341492, "nrmse": 0.15654479712247849, "psnr": 33.70793914794922, "time": 0.2420408132020384, "total_loss": 14015.1376953125}
71
+ {"data_time": 6.348639726638794e-05, "eta_seconds": 109.35973707190715, "iteration": 1419, "l1": 14504.8740234375, "l2": 16892.572265625, "loss": 14504.8740234375, "lr": 0.0001, "mag_l1": 9062.95947265625, "nrmse": 0.158022902905941, "psnr": 33.28822135925293, "time": 0.241186557803303, "total_loss": 14504.8740234375}
72
+ {"data_time": 6.20309729129076e-05, "eta_seconds": 104.52975297998637, "iteration": 1439, "l1": 14570.55322265625, "l2": 16938.021484375, "loss": 14570.55322265625, "lr": 0.0001, "mag_l1": 9079.298828125, "nrmse": 0.15439824014902115, "psnr": 34.190120697021484, "time": 0.24121813056990504, "total_loss": 14570.55322265625}
73
+ {"data_time": 5.4096104577183723e-05, "eta_seconds": 99.70246424828656, "iteration": 1459, "l1": 14148.6298828125, "l2": 16456.64013671875, "loss": 14148.6298828125, "lr": 0.0001, "mag_l1": 9206.6796875, "nrmse": 0.15177085995674133, "psnr": 32.96951675415039, "time": 0.24162484845146537, "total_loss": 14148.6298828125}
74
+ {"data_time": 5.659833550453186e-05, "eta_seconds": 94.87435412872583, "iteration": 1479, "l1": 14428.59130859375, "l2": 16905.7626953125, "loss": 14428.59130859375, "lr": 0.0001, "mag_l1": 9294.62451171875, "nrmse": 0.1514386609196663, "psnr": 33.57109832763672, "time": 0.24139102082699537, "total_loss": 14428.59130859375}
75
+ {"data_time": 6.248452700674534e-05, "eta_seconds": 90.04354841634631, "iteration": 1499, "l1": 13502.96875, "l2": 15441.13330078125, "loss": 13502.96875, "lr": 0.0001, "mag_l1": 8899.90380859375, "nrmse": 0.15698648244142532, "psnr": 33.806413650512695, "time": 0.2414140475448221, "total_loss": 13502.96875}
76
+ {"data_time": 6.328010931611061e-05, "eta_seconds": 85.21348409936763, "iteration": 1519, "l1": 16368.22607421875, "l2": 19601.62109375, "loss": 16368.22607421875, "lr": 0.0001, "mag_l1": 11740.41748046875, "nrmse": 0.1850760206580162, "psnr": 31.325047492980957, "time": 0.24184500519186258, "total_loss": 16368.22607421875}
77
+ {"data_time": 5.776155740022659e-05, "eta_seconds": 80.38282867753878, "iteration": 1539, "l1": 14534.01904296875, "l2": 17129.625, "loss": 14534.01904296875, "lr": 0.0001, "mag_l1": 9170.3642578125, "nrmse": 0.1565786600112915, "psnr": 33.045658111572266, "time": 0.24163913005031645, "total_loss": 14534.01904296875}
78
+ {"data_time": 5.075358785688877e-05, "eta_seconds": 75.55146820121445, "iteration": 1559, "l1": 14640.92822265625, "l2": 17371.580078125, "loss": 14640.92822265625, "lr": 0.0001, "mag_l1": 9371.52734375, "nrmse": 0.15031981468200684, "psnr": 33.405982971191406, "time": 0.24189145979471505, "total_loss": 14640.92822265625}
79
+ {"data_time": 5.542556755244732e-05, "eta_seconds": 70.71965304901823, "iteration": 1579, "l1": 13991.0849609375, "l2": 16249.23291015625, "loss": 13991.0849609375, "lr": 0.0001, "mag_l1": 9093.2080078125, "nrmse": 0.16681111603975296, "psnr": 33.96403503417969, "time": 0.2420606310479343, "total_loss": 13991.0849609375}
80
+ {"data_time": 5.887309089303017e-05, "eta_seconds": 0.24168377043679357, "eval_time": 65.34714458091184, "iteration": 1599, "l1": 13840.16552734375, "l2": 16009.8115234375, "loss": 13840.16552734375, "lr": 0.0001, "mag_l1": 9263.2841796875, "mridata_knee_2019_val/val_nrmse": 0.18894533812999725, "mridata_knee_2019_val/val_nrmse_mag": 0.1166970506310463, "mridata_knee_2019_val/val_nrmse_mag_scan": 0.10710737854242325, "mridata_knee_2019_val/val_nrmse_scan": 0.17699891328811646, "mridata_knee_2019_val/val_psnr": 32.40996551513672, "mridata_knee_2019_val/val_psnr_mag": 36.686038970947266, "mridata_knee_2019_val/val_psnr_mag_scan": 44.65895080566406, "mridata_knee_2019_val/val_psnr_scan": 40.29226303100586, "mridata_knee_2019_val/val_ssim (Wang)": 0.8581580519676208, "mridata_knee_2019_val/val_ssim (Wang)_scan": 0.959481418132782, "nrmse": 0.16567719727754593, "psnr": 33.099552154541016, "time": 0.24213037663139403, "total_loss": 13840.16552734375}
test-data/test-exps/basic-cpu/model_0000399.pth ADDED
File without changes
test-data/test-exps/basic-cpu/model_0000799.pth ADDED
File without changes
test-data/test-exps/basic-cpu/model_0001399.pth ADDED
File without changes
test-data/test-exps/basic-cpu/model_final.pth ADDED
File without changes
test-data/test-model/config-with-deps.yaml ADDED
@@ -0,0 +1,188 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Test file for testing that dependencies get parsed
2
+ # DEPENDENCY: numpy<=0.0.1
3
+ AUG_TEST:
4
+ UNDERSAMPLE:
5
+ ACCELERATIONS:
6
+ - 6
7
+ AUG_TRAIN:
8
+ MOTION_P: 0.2
9
+ MRI_RECON:
10
+ AUG_SENSITIVITY_MAPS: true
11
+ SCHEDULER_P:
12
+ IGNORE: false
13
+ TRANSFORMS: []
14
+ NOISE_P: 0.2
15
+ UNDERSAMPLE:
16
+ ACCELERATIONS:
17
+ - 6
18
+ CALIBRATION_SIZE: 20
19
+ CENTER_FRACTIONS: []
20
+ MAX_ATTEMPTS: 30
21
+ NAME: PoissonDiskMaskFunc
22
+ USE_MOTION: false
23
+ USE_NOISE: false
24
+ CUDNN_BENCHMARK: false
25
+ DATALOADER:
26
+ ALT_SAMPLER:
27
+ PERIOD_SUPERVISED: 1
28
+ PERIOD_UNSUPERVISED: 1
29
+ DATA_KEYS: []
30
+ DROP_LAST: true
31
+ FILTER:
32
+ BY: []
33
+ GROUP_SAMPLER:
34
+ AS_BATCH_SAMPLER: false
35
+ BATCH_BY: []
36
+ NUM_WORKERS: 0
37
+ PREFETCH_FACTOR: 2
38
+ SAMPLER_TRAIN: ''
39
+ SUBSAMPLE_TRAIN:
40
+ NUM_TOTAL: -1
41
+ NUM_TOTAL_BY_GROUP: []
42
+ NUM_UNDERSAMPLED: 0
43
+ NUM_VAL: -1
44
+ NUM_VAL_BY_GROUP: []
45
+ SEED: 1000
46
+ DATASETS:
47
+ TEST:
48
+ - mridata_knee_2019_test
49
+ TRAIN:
50
+ - mridata_knee_2019_train
51
+ VAL:
52
+ - mridata_knee_2019_val
53
+ MODEL:
54
+ A2R:
55
+ META_ARCHITECTURE: GeneralizedUnrolledCNN
56
+ USE_SUPERVISED_CONSISTENCY: false
57
+ CONSISTENCY:
58
+ AUG:
59
+ MOTION:
60
+ RANGE:
61
+ - 0.2
62
+ - 0.5
63
+ SCHEDULER:
64
+ WARMUP_ITERS: 0
65
+ WARMUP_METHOD: ''
66
+ MRI_RECON:
67
+ AUG_SENSITIVITY_MAPS: true
68
+ SCHEDULER_P:
69
+ IGNORE: false
70
+ TRANSFORMS: []
71
+ NOISE:
72
+ MASK:
73
+ RHO: 1.0
74
+ SCHEDULER:
75
+ WARMUP_ITERS: 0
76
+ WARMUP_METHOD: ''
77
+ STD_DEV:
78
+ - 1
79
+ LATENT_LOSS_NAME: mag_l1
80
+ LATENT_LOSS_WEIGHT: 0.1
81
+ LOSS_NAME: l1
82
+ LOSS_WEIGHT: 0.1
83
+ NUM_LATENT_LAYERS: 1
84
+ USE_CONSISTENCY: true
85
+ USE_LATENT: false
86
+ CS:
87
+ MAX_ITER: 200
88
+ REGULARIZATION: 0.005
89
+ DENOISING:
90
+ META_ARCHITECTURE: GeneralizedUnrolledCNN
91
+ NOISE:
92
+ STD_DEV:
93
+ - 1
94
+ USE_FULLY_SAMPLED_TARGET: true
95
+ USE_FULLY_SAMPLED_TARGET_EVAL: null
96
+ DEVICE: cuda
97
+ M2R:
98
+ META_ARCHITECTURE: GeneralizedUnrolledCNN
99
+ USE_SUPERVISED_CONSISTENCY: false
100
+ META_ARCHITECTURE: GeneralizedUnrolledCNN
101
+ N2R:
102
+ META_ARCHITECTURE: GeneralizedUnrolledCNN
103
+ USE_SUPERVISED_CONSISTENCY: false
104
+ NM2R:
105
+ META_ARCHITECTURE: GeneralizedUnrolledCNN
106
+ USE_SUPERVISED_CONSISTENCY: false
107
+ NORMALIZER:
108
+ KEYWORDS: []
109
+ NAME: TopMagnitudeNormalizer
110
+ RECON_LOSS:
111
+ NAME: l1
112
+ RENORMALIZE_DATA: true
113
+ SEG:
114
+ ACTIVATION: sigmoid
115
+ CLASSES: []
116
+ INCLUDE_BACKGROUND: false
117
+ SSDU:
118
+ MASKER:
119
+ PARAMS: {}
120
+ META_ARCHITECTURE: GeneralizedUnrolledCNN
121
+ UNET:
122
+ BLOCK_ORDER:
123
+ - conv
124
+ - relu
125
+ - conv
126
+ - relu
127
+ - batchnorm
128
+ - dropout
129
+ CHANNELS: 32
130
+ DROPOUT: 0.0
131
+ IN_CHANNELS: 2
132
+ NORMALIZE: false
133
+ NUM_POOL_LAYERS: 4
134
+ OUT_CHANNELS: 2
135
+ UNROLLED:
136
+ BLOCK_ARCHITECTURE: ResNet
137
+ CONV_BLOCK:
138
+ ACTIVATION: relu
139
+ NORM: none
140
+ NORM_AFFINE: false
141
+ ORDER:
142
+ - norm
143
+ - act
144
+ - drop
145
+ - conv
146
+ DROPOUT: 0.0
147
+ FIX_STEP_SIZE: false
148
+ KERNEL_SIZE:
149
+ - 3
150
+ NUM_EMAPS: 1
151
+ NUM_FEATURES: 128
152
+ NUM_RESBLOCKS: 2
153
+ NUM_UNROLLED_STEPS: 8
154
+ PADDING: ''
155
+ SHARE_WEIGHTS: false
156
+ WEIGHTS: ''
157
+ OUTPUT_DIR: "results://meddlr/tests/basic"
158
+ SEED: -1
159
+ SOLVER:
160
+ BASE_LR: 0.0001
161
+ BIAS_LR_FACTOR: 1.0
162
+ CHECKPOINT_PERIOD: 20
163
+ GAMMA: 0.1
164
+ GRAD_ACCUM_ITERS: 1
165
+ LR_SCHEDULER_NAME: WarmupMultiStepLR
166
+ MAX_ITER: 80
167
+ MOMENTUM: 0.9
168
+ OPTIMIZER: Adam
169
+ STEPS:
170
+ - 30000
171
+ TEST_BATCH_SIZE: 2
172
+ TRAIN_BATCH_SIZE: 1
173
+ WARMUP_FACTOR: 0.001
174
+ WARMUP_ITERS: 1000
175
+ WARMUP_METHOD: linear
176
+ WEIGHT_DECAY: 0.0001
177
+ WEIGHT_DECAY_BIAS: 0.0001
178
+ WEIGHT_DECAY_NORM: 0.0
179
+ TEST:
180
+ EVAL_PERIOD: 40
181
+ EXPECTED_RESULTS: []
182
+ FLUSH_PERIOD: 0
183
+ VAL_AS_TEST: true
184
+ VAL_METRICS:
185
+ RECON: []
186
+ TIME_SCALE: iter
187
+ VERSION: 1
188
+ VIS_PERIOD: 20
test-data/test-model/config.yaml ADDED
@@ -0,0 +1,186 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ AUG_TEST:
2
+ UNDERSAMPLE:
3
+ ACCELERATIONS:
4
+ - 6
5
+ AUG_TRAIN:
6
+ MOTION_P: 0.2
7
+ MRI_RECON:
8
+ AUG_SENSITIVITY_MAPS: true
9
+ SCHEDULER_P:
10
+ IGNORE: false
11
+ TRANSFORMS: []
12
+ NOISE_P: 0.2
13
+ UNDERSAMPLE:
14
+ ACCELERATIONS:
15
+ - 6
16
+ CALIBRATION_SIZE: 20
17
+ CENTER_FRACTIONS: []
18
+ MAX_ATTEMPTS: 30
19
+ NAME: PoissonDiskMaskFunc
20
+ USE_MOTION: false
21
+ USE_NOISE: false
22
+ CUDNN_BENCHMARK: false
23
+ DATALOADER:
24
+ ALT_SAMPLER:
25
+ PERIOD_SUPERVISED: 1
26
+ PERIOD_UNSUPERVISED: 1
27
+ DATA_KEYS: []
28
+ DROP_LAST: true
29
+ FILTER:
30
+ BY: []
31
+ GROUP_SAMPLER:
32
+ AS_BATCH_SAMPLER: false
33
+ BATCH_BY: []
34
+ NUM_WORKERS: 0
35
+ PREFETCH_FACTOR: 2
36
+ SAMPLER_TRAIN: ''
37
+ SUBSAMPLE_TRAIN:
38
+ NUM_TOTAL: -1
39
+ NUM_TOTAL_BY_GROUP: []
40
+ NUM_UNDERSAMPLED: 0
41
+ NUM_VAL: -1
42
+ NUM_VAL_BY_GROUP: []
43
+ SEED: 1000
44
+ DATASETS:
45
+ TEST:
46
+ - mridata_knee_2019_test
47
+ TRAIN:
48
+ - mridata_knee_2019_train
49
+ VAL:
50
+ - mridata_knee_2019_val
51
+ MODEL:
52
+ A2R:
53
+ META_ARCHITECTURE: GeneralizedUnrolledCNN
54
+ USE_SUPERVISED_CONSISTENCY: false
55
+ CONSISTENCY:
56
+ AUG:
57
+ MOTION:
58
+ RANGE:
59
+ - 0.2
60
+ - 0.5
61
+ SCHEDULER:
62
+ WARMUP_ITERS: 0
63
+ WARMUP_METHOD: ''
64
+ MRI_RECON:
65
+ AUG_SENSITIVITY_MAPS: true
66
+ SCHEDULER_P:
67
+ IGNORE: false
68
+ TRANSFORMS: []
69
+ NOISE:
70
+ MASK:
71
+ RHO: 1.0
72
+ SCHEDULER:
73
+ WARMUP_ITERS: 0
74
+ WARMUP_METHOD: ''
75
+ STD_DEV:
76
+ - 1
77
+ LATENT_LOSS_NAME: mag_l1
78
+ LATENT_LOSS_WEIGHT: 0.1
79
+ LOSS_NAME: l1
80
+ LOSS_WEIGHT: 0.1
81
+ NUM_LATENT_LAYERS: 1
82
+ USE_CONSISTENCY: true
83
+ USE_LATENT: false
84
+ CS:
85
+ MAX_ITER: 200
86
+ REGULARIZATION: 0.005
87
+ DENOISING:
88
+ META_ARCHITECTURE: GeneralizedUnrolledCNN
89
+ NOISE:
90
+ STD_DEV:
91
+ - 1
92
+ USE_FULLY_SAMPLED_TARGET: true
93
+ USE_FULLY_SAMPLED_TARGET_EVAL: null
94
+ DEVICE: cuda
95
+ M2R:
96
+ META_ARCHITECTURE: GeneralizedUnrolledCNN
97
+ USE_SUPERVISED_CONSISTENCY: false
98
+ META_ARCHITECTURE: GeneralizedUnrolledCNN
99
+ N2R:
100
+ META_ARCHITECTURE: GeneralizedUnrolledCNN
101
+ USE_SUPERVISED_CONSISTENCY: false
102
+ NM2R:
103
+ META_ARCHITECTURE: GeneralizedUnrolledCNN
104
+ USE_SUPERVISED_CONSISTENCY: false
105
+ NORMALIZER:
106
+ KEYWORDS: []
107
+ NAME: TopMagnitudeNormalizer
108
+ RECON_LOSS:
109
+ NAME: l1
110
+ RENORMALIZE_DATA: true
111
+ SEG:
112
+ ACTIVATION: sigmoid
113
+ CLASSES: []
114
+ INCLUDE_BACKGROUND: false
115
+ SSDU:
116
+ MASKER:
117
+ PARAMS: {}
118
+ META_ARCHITECTURE: GeneralizedUnrolledCNN
119
+ UNET:
120
+ BLOCK_ORDER:
121
+ - conv
122
+ - relu
123
+ - conv
124
+ - relu
125
+ - batchnorm
126
+ - dropout
127
+ CHANNELS: 32
128
+ DROPOUT: 0.0
129
+ IN_CHANNELS: 2
130
+ NORMALIZE: false
131
+ NUM_POOL_LAYERS: 4
132
+ OUT_CHANNELS: 2
133
+ UNROLLED:
134
+ BLOCK_ARCHITECTURE: ResNet
135
+ CONV_BLOCK:
136
+ ACTIVATION: relu
137
+ NORM: none
138
+ NORM_AFFINE: false
139
+ ORDER:
140
+ - norm
141
+ - act
142
+ - drop
143
+ - conv
144
+ DROPOUT: 0.0
145
+ FIX_STEP_SIZE: false
146
+ KERNEL_SIZE:
147
+ - 3
148
+ NUM_EMAPS: 1
149
+ NUM_FEATURES: 128
150
+ NUM_RESBLOCKS: 2
151
+ NUM_UNROLLED_STEPS: 8
152
+ PADDING: ''
153
+ SHARE_WEIGHTS: false
154
+ WEIGHTS: ''
155
+ OUTPUT_DIR: "results://meddlr/tests/basic"
156
+ SEED: -1
157
+ SOLVER:
158
+ BASE_LR: 0.0001
159
+ BIAS_LR_FACTOR: 1.0
160
+ CHECKPOINT_PERIOD: 20
161
+ GAMMA: 0.1
162
+ GRAD_ACCUM_ITERS: 1
163
+ LR_SCHEDULER_NAME: WarmupMultiStepLR
164
+ MAX_ITER: 80
165
+ MOMENTUM: 0.9
166
+ OPTIMIZER: Adam
167
+ STEPS:
168
+ - 30000
169
+ TEST_BATCH_SIZE: 2
170
+ TRAIN_BATCH_SIZE: 1
171
+ WARMUP_FACTOR: 0.001
172
+ WARMUP_ITERS: 1000
173
+ WARMUP_METHOD: linear
174
+ WEIGHT_DECAY: 0.0001
175
+ WEIGHT_DECAY_BIAS: 0.0001
176
+ WEIGHT_DECAY_NORM: 0.0
177
+ TEST:
178
+ EVAL_PERIOD: 40
179
+ EXPECTED_RESULTS: []
180
+ FLUSH_PERIOD: 0
181
+ VAL_AS_TEST: true
182
+ VAL_METRICS:
183
+ RECON: []
184
+ TIME_SCALE: iter
185
+ VERSION: 1
186
+ VIS_PERIOD: 20
test-data/test-model/model-cpu.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:40b15fb17b19564d22eca3d037e7c7670e254591f439b7e0a388a41d4ed8d9d2
3
+ size 14382615