|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Scientific Papers Dataset.""" |
|
|
|
|
|
import json |
|
import os |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """ |
|
@article{Cohan_2018, |
|
title={A Discourse-Aware Attention Model for Abstractive Summarization of |
|
Long Documents}, |
|
url={http://dx.doi.org/10.18653/v1/n18-2097}, |
|
DOI={10.18653/v1/n18-2097}, |
|
journal={Proceedings of the 2018 Conference of the North American Chapter of |
|
the Association for Computational Linguistics: Human Language |
|
Technologies, Volume 2 (Short Papers)}, |
|
publisher={Association for Computational Linguistics}, |
|
author={Cohan, Arman and Dernoncourt, Franck and Kim, Doo Soon and Bui, Trung and Kim, Seokhwan and Chang, Walter and Goharian, Nazli}, |
|
year={2018} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """ |
|
Scientific papers datasets contains two sets of long and structured documents. |
|
The datasets are obtained from ArXiv and PubMed OpenAccess repositories. |
|
|
|
Both "arxiv" and "pubmed" have two features: |
|
- article: the body of the document, pagragraphs seperated by "/n". |
|
- abstract: the abstract of the document, pagragraphs seperated by "/n". |
|
- section_names: titles of sections, seperated by "/n". |
|
|
|
""" |
|
|
|
_DOCUMENT = "article" |
|
_SUMMARY = "abstract" |
|
|
|
_URLS = { |
|
"arxiv": "https://s3.amazonaws.com/datasets.huggingface.co/scientific_papers/1.1.1/arxiv-dataset.zip", |
|
"pubmed": "https://s3.amazonaws.com/datasets.huggingface.co/scientific_papers/1.1.1/pubmed-dataset.zip", |
|
} |
|
|
|
|
|
class ScientificPapersConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for Scientific Papers.""" |
|
|
|
def __init__(self, filename=None, **kwargs): |
|
"""BuilderConfig for ScientificPapers |
|
|
|
Args: |
|
filename: filename of different configs for the dataset. |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
|
|
super(ScientificPapersConfig, self).__init__(version=datasets.Version("1.1.1"), **kwargs) |
|
self.filename = filename |
|
|
|
|
|
class ScientificPapers(datasets.GeneratorBasedBuilder): |
|
"""Scientific Papers.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
ScientificPapersConfig(name="pubmed", description="Documents from PubMed repository."), |
|
ScientificPapersConfig(name="arxiv", description="Documents from ArXiv repository."), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
_DOCUMENT: datasets.Value("string"), |
|
_SUMMARY: datasets.Value("string"), |
|
"section_names": datasets.Value("string"), |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage="https://github.com/armancohan/long-summarization", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
dl_paths = dl_manager.download_and_extract(_URLS) |
|
path = os.path.join(dl_paths[self.config.name], self.config.name + "-dataset") |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"path": os.path.join(path, "train.txt")}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={"path": os.path.join(path, "val.txt")}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"path": os.path.join(path, "test.txt")}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, path=None): |
|
"""Yields examples.""" |
|
with open(path, encoding="utf-8") as f: |
|
for line in f: |
|
|
|
|
|
|
|
|
|
|
|
|
|
d = json.loads(line) |
|
summary = "\n".join(d["abstract_text"]) |
|
|
|
|
|
|
|
summary = summary.replace("<S>", "").replace("</S>", "") |
|
yield d["article_id"], { |
|
_DOCUMENT: "\n".join(d["article_text"]), |
|
_SUMMARY: summary, |
|
"section_names": "\n".join(d["section_names"]), |
|
} |
|
|