Datasets:
Commit
·
458be61
0
Parent(s):
Update files from the datasets library (from 1.0.0)
Browse filesRelease notes: https://github.com/huggingface/datasets/releases/tag/1.0.0
- .gitattributes +27 -0
- dataset_infos.json +1 -0
- dummy/arxiv/1.1.1/dummy_data.zip +3 -0
- dummy/pubmed/1.1.1/dummy_data.zip +3 -0
- scientific_papers.py +139 -0
.gitattributes
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
20 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
+
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
dataset_infos.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"arxiv": {"description": "\nScientific papers datasets contains two sets of long and structured documents.\nThe datasets are obtained from ArXiv and PubMed OpenAccess repositories.\n\nBoth \"arxiv\" and \"pubmed\" have two features:\n - article: the body of the document, pagragraphs seperated by \"/n\".\n - abstract: the abstract of the document, pagragraphs seperated by \"/n\".\n - section_names: titles of sections, seperated by \"/n\".\n\n", "citation": "\n@article{Cohan_2018,\n title={A Discourse-Aware Attention Model for Abstractive Summarization of\n Long Documents},\n url={http://dx.doi.org/10.18653/v1/n18-2097},\n DOI={10.18653/v1/n18-2097},\n journal={Proceedings of the 2018 Conference of the North American Chapter of\n the Association for Computational Linguistics: Human Language\n Technologies, Volume 2 (Short Papers)},\n publisher={Association for Computational Linguistics},\n author={Cohan, Arman and Dernoncourt, Franck and Kim, Doo Soon and Bui, Trung and Kim, Seokhwan and Chang, Walter and Goharian, Nazli},\n year={2018}\n}\n", "homepage": "https://github.com/armancohan/long-summarization", "license": "", "features": {"article": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}, "section_names": {"dtype": "string", "id": null, "_type": "Value"}}, "supervised_keys": null, "builder_name": "scientific_papers", "config_name": "arxiv", "version": {"version_str": "1.1.1", "description": null, "datasets_version_to_prepare": null, "major": 1, "minor": 1, "patch": 1}, "splits": {"test": {"name": "test", "num_bytes": 217518181, "num_examples": 6440, "dataset_name": "scientific_papers"}, "train": {"name": "train", "num_bytes": 7148443320, "num_examples": 203037, "dataset_name": "scientific_papers"}, "validation": {"name": "validation", "num_bytes": 217128744, "num_examples": 6436, "dataset_name": "scientific_papers"}}, "download_checksums": {"https://drive.google.com/uc?id=1b3rmCSIoh6VhD4HKWjI4HOW-cSwcwbeC&export=download": {"num_bytes": 3624420843, "checksum": "82ed30dd7c66a6497eeb3d7c3090c274e9e32c012438f8e0bb3cce3e6c1fcada"}, "https://drive.google.com/uc?id=1lvsqvsFi3W-pE1SqNZI0s8NR9rC1tsja&export=download": {"num_bytes": 880225504, "checksum": "d424074726a5e29e20bf834055fe7efe90f8a37bce0a2b512e4ab7e487013c04"}}, "download_size": 4504646347, "dataset_size": 7583090245, "size_in_bytes": 12087736592}, "pubmed": {"description": "\nScientific papers datasets contains two sets of long and structured documents.\nThe datasets are obtained from ArXiv and PubMed OpenAccess repositories.\n\nBoth \"arxiv\" and \"pubmed\" have two features:\n - article: the body of the document, pagragraphs seperated by \"/n\".\n - abstract: the abstract of the document, pagragraphs seperated by \"/n\".\n - section_names: titles of sections, seperated by \"/n\".\n\n", "citation": "\n@article{Cohan_2018,\n title={A Discourse-Aware Attention Model for Abstractive Summarization of\n Long Documents},\n url={http://dx.doi.org/10.18653/v1/n18-2097},\n DOI={10.18653/v1/n18-2097},\n journal={Proceedings of the 2018 Conference of the North American Chapter of\n the Association for Computational Linguistics: Human Language\n Technologies, Volume 2 (Short Papers)},\n publisher={Association for Computational Linguistics},\n author={Cohan, Arman and Dernoncourt, Franck and Kim, Doo Soon and Bui, Trung and Kim, Seokhwan and Chang, Walter and Goharian, Nazli},\n year={2018}\n}\n", "homepage": "https://github.com/armancohan/long-summarization", "license": "", "features": {"article": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}, "section_names": {"dtype": "string", "id": null, "_type": "Value"}}, "supervised_keys": null, "builder_name": "scientific_papers", "config_name": "pubmed", "version": {"version_str": "1.1.1", "description": null, "datasets_version_to_prepare": null, "major": 1, "minor": 1, "patch": 1}, "splits": {"test": {"name": "test", "num_bytes": 127187780, "num_examples": 6658, "dataset_name": "scientific_papers"}, "train": {"name": "train", "num_bytes": 2252087227, "num_examples": 119924, "dataset_name": "scientific_papers"}, "validation": {"name": "validation", "num_bytes": 127406718, "num_examples": 6633, "dataset_name": "scientific_papers"}}, "download_checksums": {"https://drive.google.com/uc?id=1b3rmCSIoh6VhD4HKWjI4HOW-cSwcwbeC&export=download": {"num_bytes": 3624420843, "checksum": "82ed30dd7c66a6497eeb3d7c3090c274e9e32c012438f8e0bb3cce3e6c1fcada"}, "https://drive.google.com/uc?id=1lvsqvsFi3W-pE1SqNZI0s8NR9rC1tsja&export=download": {"num_bytes": 880225504, "checksum": "d424074726a5e29e20bf834055fe7efe90f8a37bce0a2b512e4ab7e487013c04"}}, "download_size": 4504646347, "dataset_size": 2506681725, "size_in_bytes": 7011328072}}
|
dummy/arxiv/1.1.1/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bdb4ffacf8d2d0950f715aae4702c00c20c8ef2edc16dbfd99be80343804a701
|
3 |
+
size 3497
|
dummy/pubmed/1.1.1/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c2c8b90389b4948b07a51da1ec147b47eb40f2227b88e64fbd47d92d1b468fd1
|
3 |
+
size 3520
|
scientific_papers.py
ADDED
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""Scientific Papers Dataset."""
|
18 |
+
|
19 |
+
from __future__ import absolute_import, division, print_function
|
20 |
+
|
21 |
+
import json
|
22 |
+
import os
|
23 |
+
|
24 |
+
import datasets
|
25 |
+
|
26 |
+
|
27 |
+
_CITATION = """
|
28 |
+
@article{Cohan_2018,
|
29 |
+
title={A Discourse-Aware Attention Model for Abstractive Summarization of
|
30 |
+
Long Documents},
|
31 |
+
url={http://dx.doi.org/10.18653/v1/n18-2097},
|
32 |
+
DOI={10.18653/v1/n18-2097},
|
33 |
+
journal={Proceedings of the 2018 Conference of the North American Chapter of
|
34 |
+
the Association for Computational Linguistics: Human Language
|
35 |
+
Technologies, Volume 2 (Short Papers)},
|
36 |
+
publisher={Association for Computational Linguistics},
|
37 |
+
author={Cohan, Arman and Dernoncourt, Franck and Kim, Doo Soon and Bui, Trung and Kim, Seokhwan and Chang, Walter and Goharian, Nazli},
|
38 |
+
year={2018}
|
39 |
+
}
|
40 |
+
"""
|
41 |
+
|
42 |
+
_DESCRIPTION = """
|
43 |
+
Scientific papers datasets contains two sets of long and structured documents.
|
44 |
+
The datasets are obtained from ArXiv and PubMed OpenAccess repositories.
|
45 |
+
|
46 |
+
Both "arxiv" and "pubmed" have two features:
|
47 |
+
- article: the body of the document, pagragraphs seperated by "/n".
|
48 |
+
- abstract: the abstract of the document, pagragraphs seperated by "/n".
|
49 |
+
- section_names: titles of sections, seperated by "/n".
|
50 |
+
|
51 |
+
"""
|
52 |
+
|
53 |
+
_DOCUMENT = "article"
|
54 |
+
_SUMMARY = "abstract"
|
55 |
+
|
56 |
+
_URLS = {
|
57 |
+
"arxiv": "https://drive.google.com/uc?id=1b3rmCSIoh6VhD4HKWjI4HOW-cSwcwbeC&export=download",
|
58 |
+
"pubmed": "https://drive.google.com/uc?id=1lvsqvsFi3W-pE1SqNZI0s8NR9rC1tsja&export=download",
|
59 |
+
}
|
60 |
+
|
61 |
+
|
62 |
+
class ScientificPapersConfig(datasets.BuilderConfig):
|
63 |
+
"""BuilderConfig for Scientific Papers."""
|
64 |
+
|
65 |
+
def __init__(self, filename=None, **kwargs):
|
66 |
+
"""BuilderConfig for Wikihow.
|
67 |
+
|
68 |
+
Args:
|
69 |
+
filename: filename of different configs for the dataset.
|
70 |
+
**kwargs: keyword arguments forwarded to super.
|
71 |
+
"""
|
72 |
+
# 1.1.0 remove sentence breaker <S> and </S> in summary.
|
73 |
+
super(ScientificPapersConfig, self).__init__(version=datasets.Version("1.1.1"), **kwargs)
|
74 |
+
self.filename = filename
|
75 |
+
|
76 |
+
|
77 |
+
class ScientificPapers(datasets.GeneratorBasedBuilder):
|
78 |
+
"""Scientific Papers."""
|
79 |
+
|
80 |
+
BUILDER_CONFIGS = [
|
81 |
+
ScientificPapersConfig(name="pubmed", description="Documents from PubMed repository."),
|
82 |
+
ScientificPapersConfig(name="arxiv", description="Documents from ArXiv repository."),
|
83 |
+
]
|
84 |
+
|
85 |
+
def _info(self):
|
86 |
+
return datasets.DatasetInfo(
|
87 |
+
description=_DESCRIPTION,
|
88 |
+
features=datasets.Features(
|
89 |
+
{
|
90 |
+
_DOCUMENT: datasets.Value("string"),
|
91 |
+
_SUMMARY: datasets.Value("string"),
|
92 |
+
"section_names": datasets.Value("string"),
|
93 |
+
}
|
94 |
+
),
|
95 |
+
supervised_keys=None,
|
96 |
+
homepage="https://github.com/armancohan/long-summarization",
|
97 |
+
citation=_CITATION,
|
98 |
+
)
|
99 |
+
|
100 |
+
def _split_generators(self, dl_manager):
|
101 |
+
"""Returns SplitGenerators."""
|
102 |
+
dl_paths = dl_manager.download_and_extract(_URLS)
|
103 |
+
path = os.path.join(dl_paths[self.config.name], self.config.name + "-dataset")
|
104 |
+
return [
|
105 |
+
datasets.SplitGenerator(
|
106 |
+
name=datasets.Split.TRAIN,
|
107 |
+
gen_kwargs={"path": os.path.join(path, "train.txt")},
|
108 |
+
),
|
109 |
+
datasets.SplitGenerator(
|
110 |
+
name=datasets.Split.VALIDATION,
|
111 |
+
gen_kwargs={"path": os.path.join(path, "val.txt")},
|
112 |
+
),
|
113 |
+
datasets.SplitGenerator(
|
114 |
+
name=datasets.Split.TEST,
|
115 |
+
gen_kwargs={"path": os.path.join(path, "test.txt")},
|
116 |
+
),
|
117 |
+
]
|
118 |
+
|
119 |
+
def _generate_examples(self, path=None):
|
120 |
+
"""Yields examples."""
|
121 |
+
with open(path, encoding="utf-8") as f:
|
122 |
+
for line in f:
|
123 |
+
# Possible keys are:
|
124 |
+
# "article_id": str
|
125 |
+
# "article_text": list[str] article (list of paragraphs).
|
126 |
+
# "abstract_text": list[str], abstract (list of paragraphs).
|
127 |
+
# "section_names": list[str], list of section names.
|
128 |
+
# "sections": list[list[str]], list of sections (list of paragraphs)
|
129 |
+
d = json.loads(line)
|
130 |
+
summary = "\n".join(d["abstract_text"])
|
131 |
+
# In original paper, <S> and </S> are not used in vocab during training
|
132 |
+
# or during decoding.
|
133 |
+
# https://github.com/armancohan/long-summarization/blob/master/data.py#L27
|
134 |
+
summary = summary.replace("<S>", "").replace("</S>", "")
|
135 |
+
yield d["article_id"], {
|
136 |
+
_DOCUMENT: "\n".join(d["article_text"]),
|
137 |
+
_SUMMARY: summary,
|
138 |
+
"section_names": "\n".join(d["section_names"]),
|
139 |
+
}
|