# coding=utf-8 # Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Scientific Papers Dataset.""" import json import os import datasets _CITATION = """ @article{Cohan_2018, title={A Discourse-Aware Attention Model for Abstractive Summarization of Long Documents}, url={http://dx.doi.org/10.18653/v1/n18-2097}, DOI={10.18653/v1/n18-2097}, journal={Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)}, publisher={Association for Computational Linguistics}, author={Cohan, Arman and Dernoncourt, Franck and Kim, Doo Soon and Bui, Trung and Kim, Seokhwan and Chang, Walter and Goharian, Nazli}, year={2018} } """ _DESCRIPTION = """ Scientific papers datasets contains two sets of long and structured documents. The datasets are obtained from ArXiv and PubMed OpenAccess repositories. Both "arxiv" and "pubmed" have two features: - article: the body of the document, pagragraphs seperated by "/n". - abstract: the abstract of the document, pagragraphs seperated by "/n". - section_names: titles of sections, seperated by "/n". """ _DOCUMENT = "article" _SUMMARY = "abstract" _URLS = { "arxiv": "https://s3.amazonaws.com/datasets.huggingface.co/scientific_papers/1.1.1/arxiv-dataset.zip", "pubmed": "https://s3.amazonaws.com/datasets.huggingface.co/scientific_papers/1.1.1/pubmed-dataset.zip", } class ScientificPapersConfig(datasets.BuilderConfig): """BuilderConfig for Scientific Papers.""" def __init__(self, filename=None, **kwargs): """BuilderConfig for ScientificPapers Args: filename: filename of different configs for the dataset. **kwargs: keyword arguments forwarded to super. """ # 1.1.0 remove sentence breaker and in summary. super(ScientificPapersConfig, self).__init__(version=datasets.Version("1.1.1"), **kwargs) self.filename = filename class ScientificPapers(datasets.GeneratorBasedBuilder): """Scientific Papers.""" BUILDER_CONFIGS = [ ScientificPapersConfig(name="pubmed", description="Documents from PubMed repository."), ScientificPapersConfig(name="arxiv", description="Documents from ArXiv repository."), ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { _DOCUMENT: datasets.Value("string"), _SUMMARY: datasets.Value("string"), "section_names": datasets.Value("string"), } ), supervised_keys=None, homepage="https://github.com/armancohan/long-summarization", citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" dl_paths = dl_manager.download_and_extract(_URLS) path = os.path.join(dl_paths[self.config.name], self.config.name + "-dataset") return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"path": os.path.join(path, "train.txt")}, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={"path": os.path.join(path, "val.txt")}, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={"path": os.path.join(path, "test.txt")}, ), ] def _generate_examples(self, path=None): """Yields examples.""" with open(path, encoding="utf-8") as f: for line in f: # Possible keys are: # "article_id": str # "article_text": list[str] article (list of paragraphs). # "abstract_text": list[str], abstract (list of paragraphs). # "section_names": list[str], list of section names. # "sections": list[list[str]], list of sections (list of paragraphs) d = json.loads(line, strict=False) summary = "\n".join(d["abstract_text"]) # In original paper, and are not used in vocab during training # or during decoding. # https://github.com/armancohan/long-summarization/blob/master/data.py#L27 summary = summary.replace("", "").replace("", "") yield d["article_id"], { _DOCUMENT: "\n".join(d["article_text"]), _SUMMARY: summary, "section_names": "\n".join(d["section_names"]), }