from datasets import load_dataset from pathlib import Path import pandas as pd import os import pickle import logging import time import evaluate import nltk CURRENT_PATH = Path(__file__).parent logging.basicConfig(level=logging.INFO, format='%(asctime)s %(levelname)s %(message)s', datefmt='%H:%M:%S', filename=os.path.join(CURRENT_PATH, 'out', 'debug_ngrams.txt'), filemode='w') nltk.download("stopwords") nltk.download("punkt") def tokenizer(text): return nltk.tokenize.word_tokenize(text, language="portuguese") def load_pipelines(): in_path = os.path.join(CURRENT_PATH, 'models', 'n_grams') pipeline = [] for domain in ['politics', 'news', 'law', 'social_media', 'literature', 'web']: with open(os.path.join(in_path, f'{domain}.pickle'), 'rb') as f: logging.info(f"Loading {domain} pipeline...") pipeline.append({ 'pipeline': pickle.load(f), 'train_domain': domain, }) return pipeline def benchmark(pipeline, debug=False): df_results = pd.DataFrame( columns=['train_domain', 'test_domain', 'accuracy', 'f1', 'precision', 'recall']) train_domain = pipeline['train_domain'] pipeline = pipeline['pipeline'] for test_domain in ['politics', 'news', 'law', 'social_media', 'literature', 'web']: logging.info(f"Test Domain {test_domain}...") dataset = load_dataset( 'arubenruben/Portuguese_Language_Identification', test_domain, split='test') if debug: logging.info("Debug mode: using only 100 samples") dataset = dataset.shuffle().select(range(100)) else: dataset = dataset.shuffle().select(range(min(50_000, len(dataset)))) y = pipeline.predict(dataset['text']) accuracy = evaluate.load('accuracy').compute( predictions=y, references=dataset['label'])['accuracy'] f1 = evaluate.load('f1').compute( predictions=y, references=dataset['label'])['f1'] precision = evaluate.load('precision').compute( predictions=y, references=dataset['label'])['precision'] recall = evaluate.load('recall').compute( predictions=y, references=dataset['label'])['recall'] logging.info( f"Accuracy: {accuracy} | F1: {f1} | Precision: {precision} | Recall: {recall}") df_results = pd.concat([df_results, pd.DataFrame( [[train_domain, test_domain, accuracy, f1, precision, recall]], columns=df_results.columns)], ignore_index=True) return df_results def test(): DEBUG = False logging.info(f"Debug mode: {DEBUG}") pipelines = load_pipelines() df_results = pd.DataFrame( columns=['train_domain', 'test_domain', 'accuracy', 'f1', 'precision', 'recall']) for pipeline in pipelines: logging.info(f"Train Domain {pipeline['train_domain']}...") df_results = pd.concat( [df_results, benchmark(pipeline, debug=True)], ignore_index=True) logging.info("Saving results...") df_results.to_json(os.path.join(CURRENT_PATH, 'out', 'n_grams.json'), orient='records', indent=4, force_ascii=False) if __name__ == "__main__": test()