|
import os |
|
import tarfile |
|
import zipfile |
|
import gzip |
|
import traceback |
|
import requests |
|
from os.path import join as p_join |
|
from tqdm import tqdm |
|
from multiprocessing import Pool |
|
from typing import Optional |
|
from urllib3.connection import ConnectionError |
|
|
|
import pandas as pd |
|
|
|
|
|
url_metadata_s2s = "https://dl.fbaipublicfiles.com/seamless/data/seamless_align_nov2023_extension/seamless.dataset.metadata.public.enA-jaA.tsv.gz" |
|
url_metadata_s2t = "https://dl.fbaipublicfiles.com/seamless/data/seamless.dataset.metadata.public.enA-jpn.withduration.tsv.gz" |
|
cache_dir_root = "./download" |
|
n_pool = 8 |
|
|
|
|
|
def wget(url: str, cache_dir: str, filename: Optional[str] = None): |
|
os.makedirs(cache_dir, exist_ok=True) |
|
filename = os.path.basename(url) if not filename else filename |
|
output_file = p_join(cache_dir, filename) |
|
try: |
|
with open(output_file, "wb") as f: |
|
r = requests.get(url) |
|
f.write(r.content) |
|
except ConnectionError or KeyboardInterrupt: |
|
traceback.print_exc() |
|
os.remove(output_file) |
|
return False |
|
|
|
if output_file.endswith('.tar.gz') or output_file.endswith('.tgz') or output_file.endswith('.tar'): |
|
if output_file.endswith('.tar'): |
|
tar = tarfile.open(output_file) |
|
else: |
|
tar = tarfile.open(output_file, "r:gz") |
|
tar.extractall(cache_dir) |
|
tar.close() |
|
os.remove(output_file) |
|
elif output_file.endswith('.gz'): |
|
with gzip.open(output_file, 'rb') as f: |
|
with open(output_file.replace('.gz', ''), 'wb') as f_write: |
|
f_write.write(f.read()) |
|
os.remove(output_file) |
|
elif output_file.endswith('.zip'): |
|
with zipfile.ZipFile(output_file, 'r') as zip_ref: |
|
zip_ref.extractall(cache_dir) |
|
os.remove(output_file) |
|
return True |
|
|
|
|
|
def get_metadata(url: str): |
|
cache_dir = p_join(cache_dir_root, "meta") |
|
filename = os.path.basename(url).replace(".gz", "") |
|
if not os.path.exists(filename): |
|
assert wget(url, cache_dir=cache_dir) |
|
df = pd.read_csv(p_join(cache_dir, filename), sep=r'[\t\s]', header=None)[[0, 2, 6, 9, 10, 11, 12]] |
|
df.columns = ["id", "url", "text_lid_score", "laser_score", "direction", "side", "line_no"] |
|
return df |
|
|
|
|
|
def get_audio(url: str, filename: str): |
|
cache_dir = p_join(cache_dir_root, "audio") |
|
if not os.path.exists(p_join(cache_dir, filename)): |
|
return wget(url, filename=filename, cache_dir=cache_dir) |
|
return False |
|
|
|
|
|
def process_dataset(url_metadata): |
|
df_metadata = get_metadata(url_metadata) |
|
print(f"load metadata: {url_metadata}, ({len(df_metadata)} rows)") |
|
inputs = [( |
|
r['url'], f"{r['id']}.{r['direction']}.{r['side']}.{os.path.basename(r['url'])}" |
|
) for _, r in df_metadata.iterrows()] |
|
inputs = [x for x in inputs if not os.path.exists(p_join(cache_dir_root, "audio", x[1]))] |
|
print(f"{len(inputs)} urls to download") |
|
with Pool(n_pool) as pool: |
|
pool.starmap(get_audio, tqdm(inputs, total=len(inputs))) |
|
|
|
|
|
if __name__ == '__main__': |
|
process_dataset(url_metadata_s2s) |
|
process_dataset(url_metadata_s2t) |
|
|
|
|