|
import json |
|
import os |
|
import tarfile |
|
import zipfile |
|
import gzip |
|
import subprocess |
|
from os.path import join as p_join |
|
from tqdm import tqdm |
|
from multiprocessing import Pool |
|
from typing import Optional |
|
|
|
import pandas as pd |
|
|
|
direction_speech = os.getenv("DIRECTION_SPEECH", "enA") |
|
direction_text = os.getenv("DIRECTION_TEXT", "jpn") |
|
chunk_size = int(os.getenv("CHUNK_SIZE", 10)) |
|
url = f"https://dl.fbaipublicfiles.com/seamless/data/seamless.dataset.metadata.public.{direction_speech}-{direction_text}.withduration.tsv.gz" |
|
filename = os.path.basename(url) |
|
subprocess.run(["wget", url, "-O", filename]) |
|
df = pd.read_csv(filename, sep='\t', header=None, dtype=str) |
|
df.columns = ["cc_warc", "cc_sha", "cc_document_url", "cc_lineno", "paragraph_digest", "sentence_digest", "text_lid_score", "laser_score", "direction", "side", "line_no"] |
|
df = df[df.side == "jpn"] |
|
df["cc_lineno"] = df["cc_lineno"].astype(int) |
|
df.sort_values(by=["cc_warc", "cc_sha", "cc_document_url", "cc_lineno"], inplace=True) |
|
batch_size = int(len(df)/chunk_size) |
|
start = 0 |
|
end = batch_size |
|
index = 1 |
|
while start != end: |
|
df.iloc[start:end].to_csv(f"seamless.dataset.metadata.public.{direction_speech}-{direction_text}.withduration.reordered.batch_{index}.tsv", sep="\t", index=False, header=False) |
|
index += 1 |
|
start = end |
|
end += batch_size |
|
end = min(len(df), end) |
|
|