asahi417's picture
init
d221d9f
raw
history blame
9.8 kB
export CUDA_VISIBLE_DEVICES=0
export CUDA_VISIBLE_DEVICES=1
rm -rf download/audio
rm -rf download/feature
python -c 'n=41; import os; from glob import glob; tmp = [int(os.path.basename(i).split(".")[0]) for i in glob("download/feature/enA-jaA/*.json")]; print(len([x for x in tmp if (n-1) * 2500 <= x < n * 2500]))'
python -c 'n=41; import os; from glob import glob; tmp = [int(os.path.basename(i).split(".")[0]) for i in glob("download/audio/enA-jaA/enA/*")]; print(len([x for x in tmp if (n-1) * 2500 <= x < n * 2500]))'
python -c 'n=41; import os; from glob import glob; tmp = [int(os.path.basename(i).split(".")[0]) for i in glob("download/audio/enA-jaA/jaA/*")]; print(len([x for x in tmp if (n-1) * 2500 <= x < n * 2500]))'
python -c 'n=51; import os; from glob import glob; tmp = [int(os.path.basename(i).split(".")[0]) for i in glob("download/feature/enA-jaA/*.json")]; print(len([x for x in tmp if (n-1) * 2500 <= x < n * 2500]))'
python -c 'n=51; import os; from glob import glob; tmp = [int(os.path.basename(i).split(".")[0]) for i in glob("download/audio/enA-jaA/enA/*")]; print(len([x for x in tmp if (n-1) * 2500 <= x < n * 2500]))'
python -c 'n=51; import os; from glob import glob; tmp = [int(os.path.basename(i).split(".")[0]) for i in glob("download/audio/enA-jaA/jaA/*")]; print(len([x for x in tmp if (n-1) * 2500 <= x < n * 2500]))'
python -c 'n=1; import os; from glob import glob; tmp = [int(os.path.basename(i).split(".")[0]) for i in glob("download/feature/enA-jaA/*.json")]; print(len([x for x in tmp if (n-1) * 2500 <= x < n * 2500]))'
python -c 'n=1; import os; from glob import glob; tmp = [int(os.path.basename(i).split(".")[0]) for i in glob("download/audio/enA-jaA/enA/*")]; print(len([x for x in tmp if (n-1) * 2500 <= x < n * 2500]))'
python -c 'n=1; import os; from glob import glob; tmp = [int(os.path.basename(i).split(".")[0]) for i in glob("download/audio/enA-jaA/jaA/*")]; print(len([x for x in tmp if (n-1) * 2500 <= x < n * 2500]))'
python -c 'n=2; import os; from glob import glob; tmp = [int(os.path.basename(i).split(".")[0]) for i in glob("download/feature/enA-jaA/*.json")]; print(len([x for x in tmp if (n-1) * 2500 <= x < n * 2500]))'
python -c 'n=2; import os; from glob import glob; tmp = [int(os.path.basename(i).split(".")[0]) for i in glob("download/audio/enA-jaA/enA/*")]; print(len([x for x in tmp if (n-1) * 2500 <= x < n * 2500]))'
python -c 'n=2; import os; from glob import glob; tmp = [int(os.path.basename(i).split(".")[0]) for i in glob("download/audio/enA-jaA/jaA/*")]; print(len([x for x in tmp if (n-1) * 2500 <= x < n * 2500]))'
python -c 'n=10; import os; from glob import glob; tmp = [int(os.path.basename(i).split(".")[0]) for i in glob("download/feature/enA-jaA/*.json")]; print(len([x for x in tmp if (n-1) * 2500 <= x < n * 2500]))'
python -c 'n=10; import os; from glob import glob; tmp = [int(os.path.basename(i).split(".")[0]) for i in glob("download/audio/enA-jaA/enA/*")]; print(len([x for x in tmp if (n-1) * 2500 <= x < n * 2500]))'
python -c 'n=10; import os; from glob import glob; tmp = [int(os.path.basename(i).split(".")[0]) for i in glob("download/audio/enA-jaA/jaA/*")]; print(len([x for x in tmp if (n-1) * 2500 <= x < n * 2500]))'
python -c 'file_name="tmp.mp3"; from datasets import Audio; a=Audio(); wav=a.decode_example({"path": file_name, "bytes": None}); print(wav)'
# test
export N_POOL=1
export DATASET_ID=1
export DIRECTION="enA-jaA"
export LINE_NO_START=$(((DATASET_ID-1) * 2500))
export LINE_NO_END=$((DATASET_ID * 2500))
echo ${LINE_NO_START}
python download_audio.py
####################
# enA-jaA: 718_606 #
####################
export N_POOL=1
export DATASET_ID=1
export DIRECTION="enA-jaA"
export LINE_NO_START=$(((DATASET_ID-1) * 2500))
export LINE_NO_END=$((DATASET_ID * 2500))
echo ${LINE_NO_START}
python download_audio.py
export N_POOL=10
export DATASET_ID=2
export DIRECTION="enA-jaA"
export LINE_NO_START=$(((DATASET_ID-1) * 2500))
export LINE_NO_END=$((DATASET_ID * 2500))
echo ${LINE_NO_START}
python download_audio.py
export N_POOL=10
export DATASET_ID=10
export DIRECTION="enA-jaA"
export LINE_NO_START=$(((DATASET_ID-1) * 2500))
export LINE_NO_END=$((DATASET_ID * 2500))
echo ${LINE_NO_START}
python download_audio.py
export N_POOL=1
export DATASET_ID=41
export DIRECTION="enA-jaA"
export LINE_NO_START=$(((DATASET_ID-1) * 2500))
export LINE_NO_END=$((DATASET_ID * 2500))
echo ${LINE_NO_START}
python download_audio.py
export N_POOL=10
export DATASET_ID=42
export DIRECTION="enA-jaA"
export LINE_NO_START=$(((DATASET_ID-1) * 2500))
export LINE_NO_END=$((DATASET_ID * 2500))
echo ${LINE_NO_START}
python download_audio.py
export N_POOL=10
export DATASET_ID=51
export DIRECTION="enA-jaA"
export LINE_NO_START=$(((DATASET_ID-1) * 2500))
export LINE_NO_END=$((DATASET_ID * 2500))
echo ${LINE_NO_START}
python download_audio.py
for i in $(seq 51 60);
do
export N_POOL=10
export DATASET_ID=${i}
export DIRECTION="enA-jaA"
export LINE_NO_START=$(((DATASET_ID-1) * 2500))
export LINE_NO_END=$((DATASET_ID * 2500))
echo ${LINE_NO_START}
python download_audio.py
done
######################
# enA-jpn: 1_468_292 #
######################
# DOWNLOAD AUDIO
export DIRECTION="enA-jpn"
export LINE_NO_START=0
export LINE_NO_END=50000
python download_audio.py
export DIRECTION="enA-jpn"
export LINE_NO_START=50000
export LINE_NO_END=100000
python download_audio.py
export DIRECTION="enA-jpn"
export LINE_NO_START=100000
export LINE_NO_END=150000
python download_audio.py
export DIRECTION="enA-jpn"
export LINE_NO_START=150000
export LINE_NO_END=300000
python download_audio.py
export DIRECTION="enA-jpn"
export LINE_NO_START=300000
export LINE_NO_END=360000
python download_audio.py
# FILTER AUDIO
export DIRECTION="enA-jpn"
export DIRECTION_SPEECH="enA"
export LINE_NO_START=0
export LINE_NO_END=25000
python filter_audio.py
export DIRECTION="enA-jpn"
export DIRECTION_SPEECH="enA"
export LINE_NO_START=25000
export LINE_NO_END=50000
python filter_audio.py
export DIRECTION="enA-jpn"
export DIRECTION_SPEECH="enA"
export LINE_NO_START=50000
export LINE_NO_END=75000
python filter_audio.py
export DIRECTION="enA-jpn"
export DIRECTION_SPEECH="enA"
export LINE_NO_START=75000
export LINE_NO_END=100000
python filter_audio.py
export DIRECTION="enA-jpn"
export DIRECTION_SPEECH="enA"
export LINE_NO_START=100000
export LINE_NO_END=125000
python filter_audio.py
export DIRECTION="enA-jpn"
export DIRECTION_SPEECH="enA"
export LINE_NO_START=125000
export LINE_NO_END=150000
python filter_audio.py
export DIRECTION="enA-jpn"
export DIRECTION_SPEECH="enA"
export LINE_NO_START=150000
export LINE_NO_END=175000
python filter_audio.py
export DIRECTION="enA-jpn"
export DIRECTION_SPEECH="enA"
export LINE_NO_START=175000
export LINE_NO_END=200000
python filter_audio.py
export DIRECTION="enA-jpn"
export DIRECTION_SPEECH="enA"
export LINE_NO_START=200000
export LINE_NO_END=225000
python filter_audio.py
#
#export LINE_NO_START=150000
#export LINE_NO_END=300000
#export DATASET_ID="0"
#python push_s2t_translation.py
#
#
#export LINE_NO_START=300000
#export LINE_NO_END=360000
#export DATASET_ID="0"
#python push_s2t_translation.py
# DOWNLOAD TEXT
git clone https://github.com/kpu/preprocess
cd preprocess
git checkout wet
git submodule update --init --recursive
mkdir build
cd build
cmake ..
make -j4
alias wet_lines="${PWD}/build/bin/wet_lines"
cd ../
wget https://dl.fbaipublicfiles.com/seamless/data/seamless.dataset.metadata.public.enA-jpn.withduration.tsv.gz
cp ../download_text.py ./
python download_text.py
cat seamless.dataset.metadata.public.enA-jpn.withduration.reordered.batch_1.tsv | egrep ^crawl-data | tr '\t' ' ' | wet_lines | tee seamless.dataset.metadata.public.jpn.batch_1.tsv
cat seamless.dataset.metadata.public.enA-jpn.withduration.reordered.batch_2.tsv | egrep ^crawl-data | tr '\t' ' ' | wet_lines | tee seamless.dataset.metadata.public.jpn.batch_2.tsv
cat seamless.dataset.metadata.public.enA-jpn.withduration.reordered.batch_3.tsv | egrep ^crawl-data | tr '\t' ' ' | wet_lines | tee seamless.dataset.metadata.public.jpn.batch_3.tsv
cat seamless.dataset.metadata.public.enA-jpn.withduration.reordered.batch_4.tsv | egrep ^crawl-data | tr '\t' ' ' | wet_lines | tee seamless.dataset.metadata.public.jpn.batch_4.tsv
cat seamless.dataset.metadata.public.enA-jpn.withduration.reordered.batch_5.tsv | egrep ^crawl-data | tr '\t' ' ' | wet_lines | tee seamless.dataset.metadata.public.jpn.batch_5.tsv
cat seamless.dataset.metadata.public.enA-jpn.withduration.reordered.batch_6.tsv | egrep ^crawl-data | tr '\t' ' ' | wet_lines | tee seamless.dataset.metadata.public.jpn.batch_6.tsv
cat seamless.dataset.metadata.public.enA-jpn.withduration.reordered.batch_7.tsv | egrep ^crawl-data | tr '\t' ' ' | wet_lines | tee seamless.dataset.metadata.public.jpn.batch_7.tsv
cat seamless.dataset.metadata.public.enA-jpn.withduration.reordered.batch_8.tsv | egrep ^crawl-data | tr '\t' ' ' | wet_lines | tee seamless.dataset.metadata.public.jpn.batch_8.tsv
cat seamless.dataset.metadata.public.enA-jpn.withduration.reordered.batch_9.tsv | egrep ^crawl-data | tr '\t' ' ' | wet_lines | tee seamless.dataset.metadata.public.jpn.batch_9.tsv
cat seamless.dataset.metadata.public.enA-jpn.withduration.reordered.batch_10.tsv | egrep ^crawl-data | tr '\t' ' ' | wet_lines | tee seamless.dataset.metadata.public.jpn.batch_10.tsv
cat seamless.dataset.metadata.public.enA-jpn.withduration.reordered.batch_11.tsv | egrep ^crawl-data | tr '\t' ' ' | wet_lines | tee seamless.dataset.metadata.public.jpn.batch_11.tsv
cp ../format_text.py ./
python format_text.py
mv text.enA-jpn.json ../
cd ../
########
# NLLB #
########
# https://www.kecl.ntt.co.jp/icl/lirg/jparacrawl/
python -c "from datasets import load_dataset; load_dataset('allenai/nllb', 'eng_Latn-jpn_Jpan')"