asahi417 commited on
Commit
cad4a7b
·
1 Parent(s): 1dfb6ed
encodec_audio_tokenizer.py CHANGED
@@ -34,7 +34,7 @@ class BaseEncodecTokenizer:
34
  @torch.no_grad()
35
  def wav_to_tokens(self,
36
  wav: torch.Tensor,
37
- sample_rate: List[int],
38
  cpu_offload: bool = True,
39
  chunk_length: Optional[int] = None,
40
  stride: Optional[int] = None,
@@ -54,13 +54,8 @@ class BaseEncodecTokenizer:
54
  raise ValueError(f"wav should be (batch, channel, time): {wav.ndim} dims")
55
  original_device = wav.device
56
  # sampling audio
57
- assert len(sample_rate) == len(wav)
58
- new_wav = []
59
- for sr, single_wav in zip(sample_rate, wav):
60
- if sr != self.sample_rate:
61
- single_wav = julius.resample_frac(single_wav, sr, self.sample_rate)
62
- new_wav.append(single_wav)
63
- wav = torch.concat(new_wav)
64
  batch_size, channels, input_length = wav.shape
65
  if channels > 1:
66
  logging.warning("Audio has more than one channel but encoder takes the first channel only.")
 
34
  @torch.no_grad()
35
  def wav_to_tokens(self,
36
  wav: torch.Tensor,
37
+ sample_rate: int,
38
  cpu_offload: bool = True,
39
  chunk_length: Optional[int] = None,
40
  stride: Optional[int] = None,
 
54
  raise ValueError(f"wav should be (batch, channel, time): {wav.ndim} dims")
55
  original_device = wav.device
56
  # sampling audio
57
+ if sample_rate != self.sample_rate:
58
+ wav = julius.resample_frac(wav, sample_rate, self.sample_rate)
 
 
 
 
 
59
  batch_size, channels, input_length = wav.shape
60
  if channels > 1:
61
  logging.warning("Audio has more than one channel but encoder takes the first channel only.")
tokenize_dataset_s2s.py CHANGED
@@ -17,21 +17,18 @@ dataset = load_dataset(f"{hf_org}/{hf_dataset}", f"subset_{dataset_id}", split="
17
  tokenizer = EncodecTokenizer.from_pretrained()
18
 
19
 
20
- def tokenize(batch):
21
  for side in sides:
22
- wav = torch.as_tensor(np.concatenate([i["array"] for i in batch[f"{side}.audio"]]))
23
- print(wav.shape)
24
-
25
- sr = [i["sampling_rate"] for i in batch[f"{side}.audio"]]
26
- batch[f"{side}.audio.tokens"] = tokenizer.wav_to_tokens(wav=wav, sample_rate=sr).numpy().tolist()
27
- return batch
28
 
29
 
30
  dataset = dataset.map(
31
  function=tokenize,
32
  remove_columns=[f"{s}.audio" for s in sides] + [f"{s}.url" for s in sides] + [f"{s}.duration_start" for s in sides] + [f"{s}.duration_end" for s in sides],
33
- batched=True,
34
- batch_size=batch_size,
35
  num_proc=num_proc,
36
  desc="tokenize dataset"
37
  )
 
17
  tokenizer = EncodecTokenizer.from_pretrained()
18
 
19
 
20
+ def tokenize(example):
21
  for side in sides:
22
+ wav = torch.as_tensor(example[f"{side}.audio"]["array"].reshape(1, 1, -1))
23
+ example[f"{side}.audio.tokens"] = tokenizer.wav_to_tokens(
24
+ wav=wav, sample_rate=[example[f"{side}.audio"]["sampling_rate"]]
25
+ ).numpy().tolist()
26
+ return example
 
27
 
28
 
29
  dataset = dataset.map(
30
  function=tokenize,
31
  remove_columns=[f"{s}.audio" for s in sides] + [f"{s}.url" for s in sides] + [f"{s}.duration_start" for s in sides] + [f"{s}.duration_end" for s in sides],
 
 
32
  num_proc=num_proc,
33
  desc="tokenize dataset"
34
  )