init
Browse files- download_audio.py +48 -35
download_audio.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
"""
|
2 |
https://stackoverflow.com/questions/31353244/how-to-config-wget-to-retry-more-than-20
|
3 |
"""
|
|
|
4 |
import os
|
5 |
import tarfile
|
6 |
import zipfile
|
@@ -9,20 +10,23 @@ import subprocess
|
|
9 |
from os.path import join as p_join
|
10 |
from tqdm import tqdm
|
11 |
from multiprocessing import Pool
|
12 |
-
from typing import Optional
|
13 |
|
14 |
import pandas as pd
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
|
|
|
|
22 |
n_pool = int(os.getenv("N_POOL", 8))
|
23 |
wget_max_retry = os.getenv("MAX_RETRY", "1")
|
24 |
wget_timeout = os.getenv("TIMEOUT", "20")
|
25 |
-
|
|
|
26 |
|
27 |
|
28 |
def wget(url: str, cache_dir: str, filename: Optional[str] = None):
|
@@ -52,44 +56,53 @@ def wget(url: str, cache_dir: str, filename: Optional[str] = None):
|
|
52 |
return True
|
53 |
|
54 |
|
55 |
-
def get_metadata(
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
|
|
|
|
60 |
df.columns = ["id", "url", "text_lid_score", "laser_score", "direction", "side", "line_no"]
|
61 |
-
|
|
|
|
|
62 |
|
63 |
|
64 |
-
def get_audio(
|
65 |
-
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
return True
|
68 |
|
69 |
|
70 |
-
def process_dataset(
|
71 |
-
df_metadata = get_metadata(
|
72 |
-
print(f"
|
73 |
-
inputs = [(
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
|
|
78 |
if n_pool == 1:
|
79 |
-
for
|
80 |
-
|
81 |
-
|
82 |
-
print(f"failed:\n{url}")
|
83 |
else:
|
84 |
with Pool(n_pool) as pool:
|
85 |
pool.starmap(get_audio, tqdm(inputs, total=len(inputs)))
|
86 |
|
87 |
|
88 |
if __name__ == '__main__':
|
89 |
-
|
90 |
-
process_dataset(url_metadata_s2s)
|
91 |
-
elif data == "s2t":
|
92 |
-
process_dataset(url_metadata_s2t)
|
93 |
-
else:
|
94 |
-
raise ValueError(f"unknown data type {data}")
|
95 |
|
|
|
1 |
"""
|
2 |
https://stackoverflow.com/questions/31353244/how-to-config-wget-to-retry-more-than-20
|
3 |
"""
|
4 |
+
import json
|
5 |
import os
|
6 |
import tarfile
|
7 |
import zipfile
|
|
|
10 |
from os.path import join as p_join
|
11 |
from tqdm import tqdm
|
12 |
from multiprocessing import Pool
|
13 |
+
from typing import Optional, List
|
14 |
|
15 |
import pandas as pd
|
16 |
|
17 |
+
# dataset config
|
18 |
+
url_metadata_dict = {
|
19 |
+
"enA-jaA": "https://dl.fbaipublicfiles.com/seamless/data/seamless_align_nov2023_extension/seamless.dataset.metadata.public.enA-jaA.tsv.gz",
|
20 |
+
"enA-jpn": "https://dl.fbaipublicfiles.com/seamless/data/seamless.dataset.metadata.public.enA-jpn.withduration.tsv.gz"
|
21 |
+
}
|
22 |
+
direction = os.getenv("DIRECTION", "enA-jaA")
|
23 |
+
sides = set(direction.split("-"))
|
24 |
+
# processor config
|
25 |
n_pool = int(os.getenv("N_POOL", 8))
|
26 |
wget_max_retry = os.getenv("MAX_RETRY", "1")
|
27 |
wget_timeout = os.getenv("TIMEOUT", "20")
|
28 |
+
line_no_start = int(os.getenv("LINE_NO_START", 0))
|
29 |
+
line_no_end = int(os.getenv("LINE_NO_END", 500000))
|
30 |
|
31 |
|
32 |
def wget(url: str, cache_dir: str, filename: Optional[str] = None):
|
|
|
56 |
return True
|
57 |
|
58 |
|
59 |
+
def get_metadata():
|
60 |
+
url_metadata = url_metadata_dict[direction]
|
61 |
+
meta_data_filename = os.path.basename(url_metadata).replace(".gz", "")
|
62 |
+
cache_dir_metadata = p_join("download", "meta", meta_data_filename)
|
63 |
+
if not os.path.exists(cache_dir_metadata):
|
64 |
+
assert wget(url_metadata, cache_dir=cache_dir_metadata)
|
65 |
+
df = pd.read_csv(meta_data_filename, sep=r'[\t\s]', header=None)[[0, 2, 6, 9, 10, 11, 12]]
|
66 |
df.columns = ["id", "url", "text_lid_score", "laser_score", "direction", "side", "line_no"]
|
67 |
+
assert len(df["direction"].unique()) == 1
|
68 |
+
df.pop("direction")
|
69 |
+
return df.sort_values(by=["line_no", "side", "direction"])
|
70 |
|
71 |
|
72 |
+
def get_audio(dataframe: pd.DataFrame):
|
73 |
+
cache_dir_audio = p_join("download", "audio", direction)
|
74 |
+
cache_dir_feature = p_join("download", "feature", direction)
|
75 |
+
features = {"line_no": dataframe.pop('line_no').values[0]}
|
76 |
+
for side, df in dataframe.groupby("side"):
|
77 |
+
df.pop("side")
|
78 |
+
features.update({f"{side}.{k}": v for k, v in df.iloc[0].to_dict().items()})
|
79 |
+
features[f"{side}.path"] = p_join(cache_dir_audio, os.path.basename(features[f"{side}.url"]))
|
80 |
+
if not os.path.exists(features[f"{side}.path"]):
|
81 |
+
if not wget(features[f"{side}.url"], filename=features[f"{side}.path"], cache_dir=cache_dir_audio):
|
82 |
+
return False
|
83 |
+
with open(cache_dir_feature, "w") as f:
|
84 |
+
json.dump(features, f)
|
85 |
return True
|
86 |
|
87 |
|
88 |
+
def process_dataset():
|
89 |
+
df_metadata = get_metadata()
|
90 |
+
print(f"metadata: {len(df_metadata)}")
|
91 |
+
inputs = [g for line_no, g in df_metadata.groupby("line_no") if line_no_start <= line_no < line_no_end]
|
92 |
+
print(f"filtered unique lines: {len(inputs)}")
|
93 |
+
inputs = [g for g in inputs if len(g) == 2]
|
94 |
+
print(f"removed != 2: {len(inputs)}")
|
95 |
+
inputs = [g for g in inputs if len(g["side"].unique()) == 2 and set(g["side"].unique()) == sides]
|
96 |
+
print(f"removed side != 2: {len(inputs)}")
|
97 |
if n_pool == 1:
|
98 |
+
for g in tqdm(inputs, total=len(inputs)):
|
99 |
+
if not get_audio(g):
|
100 |
+
print(f"failed:\n{g['url']}")
|
|
|
101 |
else:
|
102 |
with Pool(n_pool) as pool:
|
103 |
pool.starmap(get_audio, tqdm(inputs, total=len(inputs)))
|
104 |
|
105 |
|
106 |
if __name__ == '__main__':
|
107 |
+
process_dataset()
|
|
|
|
|
|
|
|
|
|
|
108 |
|