|
import json |
|
import os |
|
from os.path import join as p_join |
|
from tqdm import tqdm |
|
from time import time |
|
|
|
import hdbscan |
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
import seaborn as sns |
|
from sklearn.manifold import TSNE |
|
|
|
|
|
import pandas as pd |
|
from datasets import load_dataset |
|
|
|
from model_meta_voice import MetaVoiceEmbedding |
|
from model_pyannote_embedding import PyannoteEmbedding |
|
from model_clap import CLAPEmbedding, CLAPGeneralEmbedding |
|
from model_speaker_embedding import ( |
|
W2VBERTEmbedding, Wav2VecEmbedding, XLSR300MEmbedding, XLSR1BEmbedding, XLSR2BEmbedding, |
|
HuBERTBaseEmbedding, HuBERTLargeEmbedding, HuBERTXLEmbedding |
|
) |
|
|
|
|
|
def get_embedding(model_class, model_name: str, dataset_name: str, data_split: str): |
|
dataset = load_dataset(dataset_name, split=data_split) |
|
file_path = p_join("experiment_cache", "embeddings", f"{model_name}.{os.path.basename(dataset_name)}.json") |
|
os.makedirs(os.path.dirname(file_path), exist_ok=True) |
|
if os.path.exists(file_path): |
|
return |
|
model = model_class() |
|
embeddings = [] |
|
for i in tqdm(dataset, total=len(dataset)): |
|
start = time() |
|
v = model.get_speaker_embedding(i["audio"]["array"], i["audio"]["sampling_rate"]) |
|
tmp = { |
|
"model": model_name, |
|
"embedding": v.tolist(), |
|
"sampling_rate": i["audio"]["sampling_rate"], |
|
"process_time": time() - start, |
|
"dataset_name": os.path.basename(dataset_name) |
|
} |
|
tmp.update({k: v for k, v in i.items() if k != "audio"}) |
|
embeddings.append(tmp) |
|
with open(file_path, "w") as f: |
|
f.write("\n".join([json.dumps(i) for i in embeddings])) |
|
|
|
|
|
def cluster_embedding(model_name, dataset_name, label_name: str): |
|
file_path_embedding = p_join("experiment_cache", "embeddings", f"{model_name}.{os.path.basename(dataset_name)}.json") |
|
file_path_cluster = p_join("experiment_cache", "cluster", f"{model_name}.{os.path.basename(dataset_name)}.{label_name}.csv") |
|
if not os.path.exists(file_path_cluster): |
|
print('CLUSTERING') |
|
os.makedirs(os.path.dirname(file_path_cluster), exist_ok=True) |
|
assert os.path.exists(file_path_embedding) |
|
with open(file_path_embedding) as f: |
|
data = [json.loads(i) for i in f.readlines()] |
|
clusterer = hdbscan.HDBSCAN() |
|
embeddings = [i["embedding"] for i in data] |
|
keys = [i["id"] for i in data] |
|
clusterer.fit(np.stack(embeddings)) |
|
print(f'{clusterer.labels_.max()} clusters found from {len(data)} data points') |
|
print(f"generating report for {label_name}") |
|
label = [i[label_name] for i in data] |
|
cluster_info = [ |
|
{"id": k, "cluster": c, f"label.{label_name}": l} for c, k, l in zip(clusterer.labels_, keys, label) if c != -1 |
|
] |
|
cluster_df = pd.DataFrame(cluster_info) |
|
cluster_df.to_csv(file_path_cluster, index=False) |
|
|
|
file_path_tsne = p_join("experiment_cache", "tsne", f"{model_name}.{os.path.basename(dataset_name)}.{label_name}.npy") |
|
if not os.path.exists(file_path_tsne): |
|
os.makedirs(os.path.dirname(file_path_tsne), exist_ok=True) |
|
print('DIMENSION REDUCTION') |
|
assert os.path.exists(file_path_embedding) |
|
with open(file_path_embedding) as f: |
|
data = np.stack([json.loads(i)['embedding'] for i in f.readlines()]) |
|
print(f'Dimension reduction: {data.shape}') |
|
embedding_2d = TSNE(n_components=2, random_state=0).fit_transform(data) |
|
np.save(file_path_tsne, embedding_2d) |
|
embedding_2d = np.load(file_path_tsne) |
|
|
|
print('PLOT') |
|
figure_path = p_join("experiment_cache", "figure", f"2d.latent_space.{model_name}.{os.path.basename(dataset_name)}.{label_name}.png") |
|
os.makedirs(os.path.dirname(figure_path), exist_ok=True) |
|
with open(file_path_embedding) as f: |
|
label = np.stack([json.loads(i)[label_name] for i in f.readlines()]) |
|
label_type = sorted(list(set(label))) |
|
label2id = {v: n for n, v in enumerate(label_type)} |
|
plt.figure() |
|
scatter = plt.scatter( |
|
embedding_2d[:, 0], |
|
embedding_2d[:, 1], |
|
s=8, |
|
c=[label2id[i] for i in label], |
|
cmap=sns.color_palette('Spectral', len(label_type), as_cmap=True) |
|
) |
|
plt.gca().set_aspect('equal', 'datalim') |
|
plt.legend(handles=scatter.legend_elements(num=len(label_type))[0], |
|
labels=label_type, |
|
bbox_to_anchor=(1.04, 1), |
|
borderaxespad=0, |
|
loc='upper left', |
|
ncol=3 if len(label2id) > 12 else 1) |
|
plt.savefig(figure_path, bbox_inches='tight', dpi=600) |
|
|
|
def analyze_embedding(model_name: str, dataset_name: str, n_shot: int = 5, n_cross_validation: int = 5): |
|
file_path = p_join("experiment_cache", "embeddings", f"{model_name}.{os.path.basename(dataset_name)}.json") |
|
assert os.path.exists(file_path) |
|
with open(file_path) as f: |
|
embeddings = [json.loads(i) for i in f.readlines()] |
|
df = pd.DataFrame(embeddings) |
|
process_time = df["process_time"].mean() |
|
df.groupby("speaker_ido") |
|
sorted(df["speaker_id"].unique()) |
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
get_embedding(W2VBERTEmbedding, "w2v_bert_se", "asahi417/voxceleb1-test-split", "test") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
get_embedding(W2VBERTEmbedding, "w2v_bert_se", "ylacombe/expresso", "train") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cluster_embedding("w2v_bert_se", "asahi417/voxceleb1-test-split", "speaker_id") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cluster_embedding("w2v_bert_se", "ylacombe/expresso", "speaker_id") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cluster_embedding("w2v_bert_se", "ylacombe/expresso", "style") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|