|
"""Pyannote speaker embedding model. |
|
- pip install pyannote.audio |
|
- feature dimension: 512 |
|
- source: https://huggingface.co/pyannote/embedding |
|
""" |
|
from typing import Optional, Union, Tuple |
|
import torch |
|
import numpy as np |
|
from pyannote.audio import Model |
|
from pyannote.audio import Inference |
|
from pyannote.audio.core.inference import fix_reproducibility, map_with_specifications |
|
|
|
|
|
class PyannoteEmbedding: |
|
|
|
def __init__(self): |
|
model = Model.from_pretrained("pyannote/embedding") |
|
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
model.to(self.device) |
|
model.eval() |
|
self.inference = Inference(model, window="whole") |
|
|
|
def get_speaker_embedding(self, wav: np.ndarray, sampling_rate: Optional[int] = None) -> np.ndarray: |
|
wav = torch.as_tensor(wav.reshape(1, -1), dtype=torch.float32).to(self.device) |
|
fix_reproducibility(self.inference.device) |
|
if self.inference.window == "sliding": |
|
return self.inference.slide(wav, sampling_rate, hook=None) |
|
|
|
outputs: Union[np.ndarray, Tuple[np.ndarray]] = self.inference.infer(wav[None]) |
|
|
|
def __first_sample(outputs: np.ndarray, **kwargs) -> np.ndarray: |
|
return outputs[0] |
|
|
|
return map_with_specifications( |
|
self.inference.model.specifications, __first_sample, outputs |
|
) |
|
|