init
Browse files- .idea/.gitignore +8 -0
- .idea/experiment-speaker-embedding.iml +8 -0
- .idea/inspectionProfiles/Project_Default.xml +15 -0
- .idea/inspectionProfiles/profiles_settings.xml +6 -0
- .idea/misc.xml +7 -0
- .idea/modules.xml +8 -0
- .idea/vcs.xml +6 -0
- model_meta_voice.py +104 -0
- model_pyannote_embedding.py +33 -0
- model_w2v_bert.py +28 -0
- sample.wav +3 -0
- test.py +24 -0
.idea/.gitignore
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Default ignored files
|
2 |
+
/shelf/
|
3 |
+
/workspace.xml
|
4 |
+
# Editor-based HTTP Client requests
|
5 |
+
/httpRequests/
|
6 |
+
# Datasource local storage ignored files
|
7 |
+
/dataSources/
|
8 |
+
/dataSources.local.xml
|
.idea/experiment-speaker-embedding.iml
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0" encoding="UTF-8"?>
|
2 |
+
<module type="PYTHON_MODULE" version="4">
|
3 |
+
<component name="NewModuleRootManager">
|
4 |
+
<content url="file://$MODULE_DIR$" />
|
5 |
+
<orderEntry type="jdk" jdkName="Python 3.9 (distil) (8)" jdkType="Python SDK" />
|
6 |
+
<orderEntry type="sourceFolder" forTests="false" />
|
7 |
+
</component>
|
8 |
+
</module>
|
.idea/inspectionProfiles/Project_Default.xml
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<component name="InspectionProjectProfileManager">
|
2 |
+
<profile version="1.0">
|
3 |
+
<option name="myName" value="Project Default" />
|
4 |
+
<inspection_tool class="PyPackageRequirementsInspection" enabled="true" level="WARNING" enabled_by_default="true">
|
5 |
+
<option name="ignoredPackages">
|
6 |
+
<value>
|
7 |
+
<list size="2">
|
8 |
+
<item index="0" class="java.lang.String" itemvalue="pandas" />
|
9 |
+
<item index="1" class="java.lang.String" itemvalue="requests" />
|
10 |
+
</list>
|
11 |
+
</value>
|
12 |
+
</option>
|
13 |
+
</inspection_tool>
|
14 |
+
</profile>
|
15 |
+
</component>
|
.idea/inspectionProfiles/profiles_settings.xml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<component name="InspectionProjectProfileManager">
|
2 |
+
<settings>
|
3 |
+
<option name="USE_PROJECT_PROFILE" value="false" />
|
4 |
+
<version value="1.0" />
|
5 |
+
</settings>
|
6 |
+
</component>
|
.idea/misc.xml
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0" encoding="UTF-8"?>
|
2 |
+
<project version="4">
|
3 |
+
<component name="Black">
|
4 |
+
<option name="sdkName" value="Python 3.9 (distil) (8)" />
|
5 |
+
</component>
|
6 |
+
<component name="ProjectRootManager" version="2" project-jdk-name="Python 3.9 (distil) (8)" project-jdk-type="Python SDK" />
|
7 |
+
</project>
|
.idea/modules.xml
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0" encoding="UTF-8"?>
|
2 |
+
<project version="4">
|
3 |
+
<component name="ProjectModuleManager">
|
4 |
+
<modules>
|
5 |
+
<module fileurl="file://$PROJECT_DIR$/.idea/experiment-speaker-embedding.iml" filepath="$PROJECT_DIR$/.idea/experiment-speaker-embedding.iml" />
|
6 |
+
</modules>
|
7 |
+
</component>
|
8 |
+
</project>
|
.idea/vcs.xml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0" encoding="UTF-8"?>
|
2 |
+
<project version="4">
|
3 |
+
<component name="VcsDirectoryMappings">
|
4 |
+
<mapping directory="" vcs="Git" />
|
5 |
+
</component>
|
6 |
+
</project>
|
model_meta_voice.py
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Speaker embedding obtained via speaker verification training.
|
2 |
+
- feature dimension: 256
|
3 |
+
- source: https://github.com/metavoiceio/metavoice-src
|
4 |
+
"""
|
5 |
+
import os
|
6 |
+
import subprocess
|
7 |
+
from os.path import join as p_join
|
8 |
+
from typing import Optional
|
9 |
+
|
10 |
+
import librosa
|
11 |
+
from librosa import feature
|
12 |
+
import numpy as np
|
13 |
+
import torch
|
14 |
+
from torch import nn
|
15 |
+
|
16 |
+
|
17 |
+
checkpoint_url = "https://huggingface.co/datasets/asahi417/experiment-speaker-embedding/resolve/main/speaker_encoder.pt"
|
18 |
+
model_weight = p_join(os.path.expanduser('~'), ".cache", "experiment_speaker_embedding", "speaker_encoder.pt")
|
19 |
+
|
20 |
+
|
21 |
+
def wget(url: str, output_file: Optional[str] = None):
|
22 |
+
os.makedirs(os.path.dirname(output_file), exist_ok=True)
|
23 |
+
subprocess.run(["wget", url, "-O", output_file])
|
24 |
+
if not os.path.exists(output_file):
|
25 |
+
raise ValueError(f"failed to download {url}")
|
26 |
+
|
27 |
+
|
28 |
+
class MetaVoiceSE(nn.Module):
|
29 |
+
|
30 |
+
mel_window_length = 25
|
31 |
+
mel_window_step = 10
|
32 |
+
mel_n_channels = 40
|
33 |
+
sampling_rate = 16000
|
34 |
+
partials_n_frames = 160
|
35 |
+
model_hidden_size = 256
|
36 |
+
model_embedding_size = 256
|
37 |
+
model_num_layers = 3
|
38 |
+
|
39 |
+
def __init__(self):
|
40 |
+
super().__init__()
|
41 |
+
if not os.path.exists(model_weight):
|
42 |
+
wget(checkpoint_url, model_weight)
|
43 |
+
# Define the network
|
44 |
+
self.lstm = nn.LSTM(self.mel_n_channels, self.model_hidden_size, self.model_num_layers, batch_first=True)
|
45 |
+
self.linear = nn.Linear(self.model_hidden_size, self.model_embedding_size)
|
46 |
+
self.relu = nn.ReLU()
|
47 |
+
# Load weight
|
48 |
+
self.load_state_dict(torch.load(model_weight, map_location="cpu")["model_state"], strict=False)
|
49 |
+
# Get the target device
|
50 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
51 |
+
self.to(self.device)
|
52 |
+
self.eval()
|
53 |
+
|
54 |
+
def compute_partial_slices(self, n_samples: int, rate, min_coverage):
|
55 |
+
# Compute how many frames separate two partial utterances
|
56 |
+
samples_per_frame = int((self.sampling_rate * self.mel_window_step / 1000))
|
57 |
+
n_frames = int(np.ceil((n_samples + 1) / samples_per_frame))
|
58 |
+
frame_step = int(np.round((self.sampling_rate / rate) / samples_per_frame))
|
59 |
+
# Compute the slices
|
60 |
+
wav_slices, mel_slices = [], []
|
61 |
+
steps = max(1, n_frames - self.partials_n_frames + frame_step + 1)
|
62 |
+
for i in range(0, steps, frame_step):
|
63 |
+
mel_range = np.array([i, i + self.partials_n_frames])
|
64 |
+
wav_range = mel_range * samples_per_frame
|
65 |
+
mel_slices.append(slice(*mel_range))
|
66 |
+
wav_slices.append(slice(*wav_range))
|
67 |
+
# Evaluate whether extra padding is warranted or not
|
68 |
+
last_wav_range = wav_slices[-1]
|
69 |
+
coverage = (n_samples - last_wav_range.start) / (last_wav_range.stop - last_wav_range.start)
|
70 |
+
if coverage < min_coverage and len(mel_slices) > 1:
|
71 |
+
return wav_slices[:-1], mel_slices[:-1]
|
72 |
+
return wav_slices, mel_slices
|
73 |
+
|
74 |
+
def get_speaker_embedding(self,
|
75 |
+
wav: np.ndarray,
|
76 |
+
sampling_rate: Optional[int] = None,
|
77 |
+
rate: float = 1.3,
|
78 |
+
min_coverage: float = 0.75) -> np.ndarray:
|
79 |
+
if sampling_rate != self.sampling_rate:
|
80 |
+
wav = librosa.resample(wav, orig_sr=sampling_rate, target_sr=self.sampling_rate)
|
81 |
+
wav, _ = librosa.effects.trim(wav, top_db=20)
|
82 |
+
wav_slices, mel_slices = self.compute_partial_slices(len(wav), rate, min_coverage)
|
83 |
+
max_wave_length = wav_slices[-1].stop
|
84 |
+
if max_wave_length >= len(wav):
|
85 |
+
wav = np.pad(wav, (0, max_wave_length - len(wav)), "constant")
|
86 |
+
# Wav -> Mel spectrogram
|
87 |
+
frames = feature.melspectrogram(
|
88 |
+
y=wav,
|
89 |
+
sr=self.sampling_rate,
|
90 |
+
n_fft=int(self.sampling_rate * self.mel_window_length / 1000),
|
91 |
+
hop_length=int(self.sampling_rate * self.mel_window_step / 1000),
|
92 |
+
n_mels=self.mel_n_channels,
|
93 |
+
)
|
94 |
+
mel = frames.astype(np.float32).T
|
95 |
+
mel = np.array([mel[s] for s in mel_slices])
|
96 |
+
# inference
|
97 |
+
with torch.no_grad():
|
98 |
+
mel = torch.from_numpy(mel).to(self.device)
|
99 |
+
_, (hidden, _) = self.lstm(mel)
|
100 |
+
embeds_raw = self.relu(self.linear(hidden[-1]))
|
101 |
+
partial_embeds = embeds_raw / torch.norm(embeds_raw, dim=1, keepdim=True)
|
102 |
+
partial_embeds = partial_embeds.cpu().numpy()
|
103 |
+
raw_embed = np.mean(partial_embeds, axis=0)
|
104 |
+
return raw_embed / np.linalg.norm(raw_embed, 2)
|
model_pyannote_embedding.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Pyannote speaker embedding model.
|
2 |
+
- pip install pyannote.audio
|
3 |
+
- feature dimension: 512
|
4 |
+
- source: https://huggingface.co/pyannote/embedding
|
5 |
+
"""
|
6 |
+
from typing import Optional, Union, Tuple
|
7 |
+
import torch
|
8 |
+
import numpy as np
|
9 |
+
from pyannote.audio import Model
|
10 |
+
from pyannote.audio import Inference
|
11 |
+
from pyannote.audio.core.inference import fix_reproducibility, map_with_specifications
|
12 |
+
|
13 |
+
|
14 |
+
class PyannoteSE:
|
15 |
+
|
16 |
+
def __init__(self):
|
17 |
+
self.model = Model.from_pretrained("pyannote/embedding")
|
18 |
+
self.inference = Inference(self.model, window="whole")
|
19 |
+
|
20 |
+
def get_speaker_embedding(self, wav: np.ndarray, sampling_rate: Optional[int] = None) -> np.ndarray:
|
21 |
+
wav = torch.as_tensor(wav.reshape(1, -1))
|
22 |
+
fix_reproducibility(self.inference.device)
|
23 |
+
if self.inference.window == "sliding":
|
24 |
+
return self.inference.slide(wav, sampling_rate, hook=None)
|
25 |
+
|
26 |
+
outputs: Union[np.ndarray, Tuple[np.ndarray]] = self.inference.infer(wav[None])
|
27 |
+
|
28 |
+
def __first_sample(outputs: np.ndarray, **kwargs) -> np.ndarray:
|
29 |
+
return outputs[0]
|
30 |
+
|
31 |
+
return map_with_specifications(
|
32 |
+
self.model.specifications, __first_sample, outputs
|
33 |
+
)
|
model_w2v_bert.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Meta's w2vBERT based speaker embedding.
|
2 |
+
- feature dimension: 1024
|
3 |
+
- source: https://huggingface.co/facebook/w2v-bert-2.0
|
4 |
+
"""
|
5 |
+
from typing import Optional
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import librosa
|
9 |
+
import numpy as np
|
10 |
+
from transformers import Wav2Vec2BertModel, AutoFeatureExtractor
|
11 |
+
|
12 |
+
|
13 |
+
class W2VBertSE:
|
14 |
+
def __init__(self):
|
15 |
+
self.processor = AutoFeatureExtractor.from_pretrained("facebook/w2v-bert-2.0")
|
16 |
+
self.model = Wav2Vec2BertModel.from_pretrained("facebook/w2v-bert-2.0")
|
17 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
18 |
+
self.model.to(self.device)
|
19 |
+
self.model.eval()
|
20 |
+
|
21 |
+
def get_speaker_embedding(self, wav: np.ndarray, sampling_rate: Optional[int] = None) -> np.ndarray:
|
22 |
+
# audio file is decoded on the fly
|
23 |
+
if sampling_rate != self.processor.sampling_rate:
|
24 |
+
wav = librosa.resample(wav, orig_sr=sampling_rate, target_sr=self.processor.sampling_rate)
|
25 |
+
inputs = self.processor(wav, sampling_rate=self.processor.sampling_rate, return_tensors="pt")
|
26 |
+
with torch.no_grad():
|
27 |
+
outputs = self.model(**{k: v.to(self.device) for k, v in inputs.items()})
|
28 |
+
return outputs.last_hidden_state.mean(1).cpu().numpy()[0]
|
sample.wav
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d9378ee67487807492fe471b1c82384ac275198b6022da5ba01995af77dce90a
|
3 |
+
size 465004
|
test.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import librosa
|
2 |
+
from model_meta_voice import MetaVoiceSE
|
3 |
+
from model_pyannote_embedding import PyannoteSE
|
4 |
+
from model_w2v_bert import W2VBertSE
|
5 |
+
|
6 |
+
|
7 |
+
def test():
|
8 |
+
wav, sr = librosa.load("sample.wav")
|
9 |
+
print("MetaVoiceSE")
|
10 |
+
model = MetaVoiceSE()
|
11 |
+
v = model.get_speaker_embedding(wav, sr)
|
12 |
+
print(v.shape)
|
13 |
+
print("PyannoteSE")
|
14 |
+
model = PyannoteSE()
|
15 |
+
v = model.get_speaker_embedding(wav, sr)
|
16 |
+
print(v.shape)
|
17 |
+
print("W2VBertSE")
|
18 |
+
model = W2VBertSE()
|
19 |
+
v = model.get_speaker_embedding(wav, sr)
|
20 |
+
print(v.shape)
|
21 |
+
|
22 |
+
|
23 |
+
if __name__ == '__main__':
|
24 |
+
test()
|