asahi417 commited on
Commit
af0bbe9
·
1 Parent(s): 0b228bb
experiment_cache/.DS_Store CHANGED
Binary files a/experiment_cache/.DS_Store and b/experiment_cache/.DS_Store differ
 
model_speaker_embedding.py CHANGED
@@ -11,12 +11,13 @@ from transformers import AutoModel, AutoFeatureExtractor
11
  # W2V BERT #
12
  ############
13
  class W2VBERTEmbedding:
14
- def __init__(self, ckpt: str = "facebook/w2v-bert-2.0"):
15
  self.processor = AutoFeatureExtractor.from_pretrained(ckpt)
16
  self.model = AutoModel.from_pretrained(ckpt)
17
  self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
18
  self.model.to(self.device)
19
  self.model.eval()
 
20
 
21
  def get_speaker_embedding(self, wav: np.ndarray, sampling_rate: Optional[int] = None) -> np.ndarray:
22
  # audio file is decoded on the fly
@@ -25,7 +26,9 @@ class W2VBERTEmbedding:
25
  inputs = self.processor(wav, sampling_rate=self.processor.sampling_rate, return_tensors="pt")
26
  with torch.no_grad():
27
  outputs = self.model(**{k: v.to(self.device) for k, v in inputs.items()})
28
- return outputs.last_hidden_state.mean(1).cpu().numpy()[0]
 
 
29
 
30
 
31
  ##########
 
11
  # W2V BERT #
12
  ############
13
  class W2VBERTEmbedding:
14
+ def __init__(self, ckpt: str = "facebook/w2v-bert-2.0", mean_pool: bool = True):
15
  self.processor = AutoFeatureExtractor.from_pretrained(ckpt)
16
  self.model = AutoModel.from_pretrained(ckpt)
17
  self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
18
  self.model.to(self.device)
19
  self.model.eval()
20
+ self.mean_pool = mean_pool
21
 
22
  def get_speaker_embedding(self, wav: np.ndarray, sampling_rate: Optional[int] = None) -> np.ndarray:
23
  # audio file is decoded on the fly
 
26
  inputs = self.processor(wav, sampling_rate=self.processor.sampling_rate, return_tensors="pt")
27
  with torch.no_grad():
28
  outputs = self.model(**{k: v.to(self.device) for k, v in inputs.items()})
29
+ if self.mean_pool:
30
+ return outputs.last_hidden_state.mean(1).cpu().numpy()[0]
31
+ return outputs.last_hidden_state.cpu().numpy()[0]
32
 
33
 
34
  ##########