asahi417 commited on
Commit
b24d689
·
1 Parent(s): 2bafee2
__pycache__/model_hubert.cpython-310.pyc DELETED
Binary file (2.1 kB)
 
__pycache__/model_w2v_bert.cpython-310.pyc DELETED
Binary file (1.71 kB)
 
__pycache__/model_xls.cpython-310.pyc DELETED
Binary file (1.85 kB)
 
model_hubert.py → model_speaker_embedding.py RENAMED
@@ -1,18 +1,20 @@
1
- """Meta's HuBERT based speaker embedding.
2
  - feature dimension: 1024
3
- - source: https://huggingface.co/facebook/hubert-large-ll60k
4
  """
5
  from typing import Optional
6
 
7
  import torch
8
  import librosa
9
  import numpy as np
10
- from transformers import AutoFeatureExtractor, AutoModel
11
 
12
 
13
- class HuBERTXLEmbedding:
14
-
15
- def __init__(self, ckpt: str = "facebook/hubert-xlarge-ll60k"):
 
 
16
  self.processor = AutoFeatureExtractor.from_pretrained(ckpt)
17
  self.model = AutoModel.from_pretrained(ckpt)
18
  self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
@@ -29,12 +31,45 @@ class HuBERTXLEmbedding:
29
  return outputs.last_hidden_state.mean(1).cpu().numpy()[0]
30
 
31
 
32
- class HuBERTLargeEmbedding(HuBERTXLEmbedding):
 
 
 
 
 
 
 
 
33
  def __init__(self):
34
  super().__init__("facebook/hubert-large-ll60k")
35
 
36
 
37
- class HuBERTBaseEmbedding(HuBERTXLEmbedding):
38
  def __init__(self):
39
  super().__init__("facebook/hubert-base-ls960")
40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Meta's w2vBERT based speaker embedding.
2
  - feature dimension: 1024
3
+ - source: https://huggingface.co/facebook/w2v-bert-2.0
4
  """
5
  from typing import Optional
6
 
7
  import torch
8
  import librosa
9
  import numpy as np
10
+ from transformers import AutoModel, AutoFeatureExtractor
11
 
12
 
13
+ ############
14
+ # W2V BERT #
15
+ ############
16
+ class W2VBERTEmbedding:
17
+ def __init__(self, ckpt: str = "facebook/w2v-bert-2.0"):
18
  self.processor = AutoFeatureExtractor.from_pretrained(ckpt)
19
  self.model = AutoModel.from_pretrained(ckpt)
20
  self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
 
31
  return outputs.last_hidden_state.mean(1).cpu().numpy()[0]
32
 
33
 
34
+ ##########
35
+ # HuBERT #
36
+ ##########
37
+ class HuBERTXLEmbedding(W2VBERTEmbedding):
38
+ def __init__(self):
39
+ super().__init__("facebook/hubert-xlarge-ll60k")
40
+
41
+
42
+ class HuBERTLargeEmbedding(W2VBERTEmbedding):
43
  def __init__(self):
44
  super().__init__("facebook/hubert-large-ll60k")
45
 
46
 
47
+ class HuBERTBaseEmbedding(W2VBERTEmbedding):
48
  def __init__(self):
49
  super().__init__("facebook/hubert-base-ls960")
50
 
51
+
52
+ ###########
53
+ # wav2vec #
54
+ ###########
55
+ class Wav2VecEmbedding(W2VBERTEmbedding):
56
+ def __init__(self):
57
+ super().__init__("facebook/wav2vec2-large-xlsr-53")
58
+
59
+
60
+ #########
61
+ # XLS-R #
62
+ #########
63
+ class XLSR2BEmbedding(W2VBERTEmbedding):
64
+ def __init__(self):
65
+ super().__init__("facebook/wav2vec2-xls-r-2b")
66
+
67
+
68
+ class XLSR1BEmbedding(W2VBERTEmbedding):
69
+ def __init__(self):
70
+ super().__init__("facebook/wav2vec2-xls-r-1b")
71
+
72
+
73
+ class XLSR300MEmbedding(W2VBERTEmbedding):
74
+ def __init__(self):
75
+ super().__init__("facebook/wav2vec2-xls-r-300m")
model_w2v_bert.py DELETED
@@ -1,28 +0,0 @@
1
- """Meta's w2vBERT based speaker embedding.
2
- - feature dimension: 1024
3
- - source: https://huggingface.co/facebook/w2v-bert-2.0
4
- """
5
- from typing import Optional
6
-
7
- import torch
8
- import librosa
9
- import numpy as np
10
- from transformers import Wav2Vec2BertModel, AutoFeatureExtractor
11
-
12
-
13
- class W2VBERTEmbedding:
14
- def __init__(self, ckpt: str = "facebook/w2v-bert-2.0"):
15
- self.processor = AutoFeatureExtractor.from_pretrained(ckpt)
16
- self.model = Wav2Vec2BertModel.from_pretrained(ckpt)
17
- self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
18
- self.model.to(self.device)
19
- self.model.eval()
20
-
21
- def get_speaker_embedding(self, wav: np.ndarray, sampling_rate: Optional[int] = None) -> np.ndarray:
22
- # audio file is decoded on the fly
23
- if sampling_rate != self.processor.sampling_rate:
24
- wav = librosa.resample(wav, orig_sr=sampling_rate, target_sr=self.processor.sampling_rate)
25
- inputs = self.processor(wav, sampling_rate=self.processor.sampling_rate, return_tensors="pt")
26
- with torch.no_grad():
27
- outputs = self.model(**{k: v.to(self.device) for k, v in inputs.items()})
28
- return outputs.last_hidden_state.mean(1).cpu().numpy()[0]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
model_xls.py DELETED
@@ -1,47 +0,0 @@
1
- """Meta's XLS-R based speaker embedding.
2
- - feature dimension: 768
3
- - source: https://huggingface.co/docs/transformers/en/model_doc/wav2vec2#transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForPreTrainingOutput
4
- """
5
- from typing import Optional
6
-
7
- import torch
8
- import librosa
9
- import numpy as np
10
- from transformers import AutoFeatureExtractor, AutoModelForPreTraining
11
-
12
-
13
- class Wav2VecEmbedding:
14
-
15
- def __init__(self, ckpt: str = "facebook/wav2vec2-large-xlsr-53"):
16
- self.processor = AutoFeatureExtractor.from_pretrained(ckpt)
17
- self.model = AutoModelForPreTraining.from_pretrained(ckpt)
18
- self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
19
- self.model.to(self.device)
20
- self.model.eval()
21
-
22
- def get_speaker_embedding(self, wav: np.ndarray, sampling_rate: Optional[int] = None) -> np.ndarray:
23
- # audio file is decoded on the fly
24
- if sampling_rate != self.processor.sampling_rate:
25
- wav = librosa.resample(wav, orig_sr=sampling_rate, target_sr=self.processor.sampling_rate)
26
- inputs = self.processor(wav, sampling_rate=self.processor.sampling_rate, return_tensors="pt")
27
- with torch.no_grad():
28
- outputs = self.model(**{k: v.to(self.device) for k, v in inputs.items()})
29
- return outputs.projected_states.mean(1).cpu().numpy()[0]
30
-
31
-
32
- class XLSR2BEmbedding(Wav2VecEmbedding):
33
-
34
- def __init__(self):
35
- super().__init__("facebook/wav2vec2-xls-r-2b")
36
-
37
-
38
- class XLSR1BEmbedding(Wav2VecEmbedding):
39
-
40
- def __init__(self):
41
- super().__init__("facebook/wav2vec2-xls-r-1b")
42
-
43
-
44
- class XLSR300MEmbedding(Wav2VecEmbedding):
45
-
46
- def __init__(self):
47
- super().__init__("facebook/wav2vec2-xls-r-300m")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
test.py CHANGED
@@ -2,9 +2,7 @@ import librosa
2
  from model_clap import CLAPEmbedding
3
  from model_meta_voice import MetaVoiceEmbedding
4
  from model_pyannote_embedding import PyannoteEmbedding
5
- from model_w2v_bert import W2VBERTEmbedding
6
- from model_xls import XLSR300MEmbedding
7
- from model_hubert import HuBERTXLEmbedding
8
 
9
 
10
  def test():
 
2
  from model_clap import CLAPEmbedding
3
  from model_meta_voice import MetaVoiceEmbedding
4
  from model_pyannote_embedding import PyannoteEmbedding
5
+ from model_speaker_embedding import W2VBERTEmbedding, XLSR300MEmbedding, HuBERTXLEmbedding
 
 
6
 
7
 
8
  def test():