init
Browse files- experiment_cache/.DS_Store +0 -0
- experiment_speaker_verification.py +31 -73
experiment_cache/.DS_Store
CHANGED
Binary files a/experiment_cache/.DS_Store and b/experiment_cache/.DS_Store differ
|
|
experiment_speaker_verification.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
import json
|
2 |
import os
|
3 |
from os.path import join as p_join
|
@@ -105,82 +106,39 @@ def cluster_embedding(model_name, dataset_name, label_name: str):
|
|
105 |
ncol=3 if len(label2id) > 12 else 1)
|
106 |
plt.savefig(figure_path, bbox_inches='tight', dpi=600)
|
107 |
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
|
118 |
|
119 |
if __name__ == '__main__':
|
120 |
-
#
|
121 |
-
#
|
122 |
-
#
|
123 |
-
|
124 |
-
# get_embedding(HuBERTBaseEmbedding, "hubert_base_se", "asahi417/voxceleb1-test-split", "test")
|
125 |
-
# get_embedding(HuBERTLargeEmbedding, "hubert_large_se", "asahi417/voxceleb1-test-split", "test")
|
126 |
-
# get_embedding(HuBERTXLEmbedding, "hubert_xl_se", "asahi417/voxceleb1-test-split", "test")
|
127 |
-
get_embedding(W2VBERTEmbedding, "w2v_bert_se", "asahi417/voxceleb1-test-split", "test")
|
128 |
-
# get_embedding(Wav2VecEmbedding, "wav2vec_se", "asahi417/voxceleb1-test-split", "test")
|
129 |
-
# get_embedding(XLSR300MEmbedding, "xlsr_300m_se", "asahi417/voxceleb1-test-split", "test")
|
130 |
-
# get_embedding(XLSR1BEmbedding, "xlsr_1b_se", "asahi417/voxceleb1-test-split", "test")
|
131 |
-
# get_embedding(XLSR2BEmbedding, "xlsr_2b_se", "asahi417/voxceleb1-test-split", "test")
|
132 |
-
|
133 |
-
# get_embedding(MetaVoiceEmbedding, "meta_voice_se", "ylacombe/expresso", "train")
|
134 |
-
# get_embedding(PyannoteEmbedding, "pyannote_se", "ylacombe/expresso", "train")
|
135 |
-
# get_embedding(CLAPEmbedding, "clap_se", "ylacombe/expresso", "train")
|
136 |
-
# get_embedding(CLAPGeneralEmbedding, "clap_general_se", "ylacombe/expresso", "train")
|
137 |
-
# get_embedding(HuBERTBaseEmbedding, "hubert_base_se", "ylacombe/expresso", "train")
|
138 |
-
# get_embedding(HuBERTLargeEmbedding, "hubert_large_se", "ylacombe/expresso", "train")
|
139 |
-
# get_embedding(HuBERTXLEmbedding, "hubert_xl_se", "ylacombe/expresso", "train")
|
140 |
-
get_embedding(W2VBERTEmbedding, "w2v_bert_se", "ylacombe/expresso", "train")
|
141 |
-
# get_embedding(Wav2VecEmbedding, "wav2vec_se", "ylacombe/expresso", "train")
|
142 |
-
# get_embedding(XLSR300MEmbedding, "xlsr_300m_se", "ylacombe/expresso", "train")
|
143 |
-
# get_embedding(XLSR1BEmbedding, "xlsr_1b_se", "ylacombe/expresso", "train")
|
144 |
-
# get_embedding(XLSR2BEmbedding, "xlsr_2b_se", "ylacombe/expresso", "train")
|
145 |
-
|
146 |
-
# cluster_embedding("meta_voice_se", "asahi417/voxceleb1-test-split", "speaker_id")
|
147 |
-
# cluster_embedding("pyannote_se", "asahi417/voxceleb1-test-split", "speaker_id")
|
148 |
-
# cluster_embedding("clap_se", "asahi417/voxceleb1-test-split", "speaker_id")
|
149 |
-
# cluster_embedding("clap_general_se", "asahi417/voxceleb1-test-split", "speaker_id")
|
150 |
-
# cluster_embedding("hubert_base_se", "asahi417/voxceleb1-test-split", "speaker_id")
|
151 |
-
# cluster_embedding("hubert_large_se", "asahi417/voxceleb1-test-split", "speaker_id")
|
152 |
-
# cluster_embedding("hubert_xl_se", "asahi417/voxceleb1-test-split", "speaker_id")
|
153 |
-
cluster_embedding("w2v_bert_se", "asahi417/voxceleb1-test-split", "speaker_id")
|
154 |
-
# cluster_embedding("wav2vec_se", "asahi417/voxceleb1-test-split", "speaker_id")
|
155 |
-
# cluster_embedding("xlsr_300m_se", "asahi417/voxceleb1-test-split", "speaker_id")
|
156 |
-
# cluster_embedding("xlsr_1b_se", "asahi417/voxceleb1-test-split", "speaker_id")
|
157 |
-
# cluster_embedding("xlsr_2b_se", "asahi417/voxceleb1-test-split", "speaker_id")
|
158 |
-
|
159 |
-
# cluster_embedding("meta_voice_se", "ylacombe/expresso", "speaker_id")
|
160 |
-
# cluster_embedding("pyannote_se", "ylacombe/expresso", "speaker_id")
|
161 |
-
# cluster_embedding("clap_se", "ylacombe/expresso", "speaker_id")
|
162 |
-
# cluster_embedding("clap_general_se", "ylacombe/expresso", "speaker_id")
|
163 |
-
# cluster_embedding("hubert_base_se", "ylacombe/expresso", "speaker_id")
|
164 |
-
# cluster_embedding("hubert_large_se", "ylacombe/expresso", "speaker_id")
|
165 |
-
# cluster_embedding("hubert_xl_se", "ylacombe/expresso", "speaker_id")
|
166 |
-
cluster_embedding("w2v_bert_se", "ylacombe/expresso", "speaker_id")
|
167 |
-
# cluster_embedding("wav2vec_se", "ylacombe/expresso", "speaker_id")
|
168 |
-
# cluster_embedding("xlsr_300m_se", "ylacombe/expresso", "speaker_id")
|
169 |
-
# cluster_embedding("xlsr_1b_se", "ylacombe/expresso", "speaker_id")
|
170 |
-
# cluster_embedding("xlsr_2b_se", "ylacombe/expresso", "speaker_id")
|
171 |
-
|
172 |
-
# cluster_embedding("meta_voice_se", "ylacombe/expresso", "style")
|
173 |
-
# cluster_embedding("pyannote_se", "ylacombe/expresso", "style")
|
174 |
-
# cluster_embedding("clap_se", "ylacombe/expresso", "style")
|
175 |
-
# cluster_embedding("clap_general_se", "ylacombe/expresso", "style")
|
176 |
-
# cluster_embedding("hubert_base_se", "ylacombe/expresso", "style")
|
177 |
-
# cluster_embedding("hubert_large_se", "ylacombe/expresso", "style")
|
178 |
-
# cluster_embedding("hubert_xl_se", "ylacombe/expresso", "style")
|
179 |
-
cluster_embedding("w2v_bert_se", "ylacombe/expresso", "style")
|
180 |
-
# cluster_embedding("wav2vec_se", "ylacombe/expresso", "style")
|
181 |
-
# cluster_embedding("xlsr_300m_se", "ylacombe/expresso", "style")
|
182 |
-
# cluster_embedding("xlsr_1b_se", "ylacombe/expresso", "style")
|
183 |
-
# cluster_embedding("xlsr_2b_se", "ylacombe/expresso", "style")
|
184 |
|
185 |
|
186 |
|
|
|
1 |
+
import argparse
|
2 |
import json
|
3 |
import os
|
4 |
from os.path import join as p_join
|
|
|
106 |
ncol=3 if len(label2id) > 12 else 1)
|
107 |
plt.savefig(figure_path, bbox_inches='tight', dpi=600)
|
108 |
|
109 |
+
|
110 |
+
def main(dataset_name, data_split, label_name):
|
111 |
+
get_embedding(MetaVoiceEmbedding, "meta_voice_se", dataset_name, data_split)
|
112 |
+
cluster_embedding("meta_voice_se", dataset_name, label_name)
|
113 |
+
get_embedding(PyannoteEmbedding, "pyannote_se", dataset_name, data_split)
|
114 |
+
cluster_embedding("pyannote_se", dataset_name, label_name)
|
115 |
+
get_embedding(CLAPEmbedding, "clap_se", dataset_name, data_split)
|
116 |
+
cluster_embedding("clap_se", dataset_name, label_name)
|
117 |
+
get_embedding(CLAPGeneralEmbedding, "clap_general_se", dataset_name, data_split)
|
118 |
+
cluster_embedding("clap_general_se", dataset_name, label_name)
|
119 |
+
get_embedding(HuBERTBaseEmbedding, "hubert_base_se", dataset_name, data_split)
|
120 |
+
cluster_embedding("hubert_base_se", dataset_name, label_name)
|
121 |
+
get_embedding(HuBERTXLEmbedding, "hubert_xl_se", dataset_name, data_split)
|
122 |
+
cluster_embedding("hubert_xl_se", dataset_name, label_name)
|
123 |
+
get_embedding(HuBERTLargeEmbedding, "hubert_large_se", dataset_name, data_split)
|
124 |
+
cluster_embedding("hubert_large_se", dataset_name, label_name)
|
125 |
+
get_embedding(Wav2VecEmbedding, "wav2vec_se", dataset_name, data_split)
|
126 |
+
cluster_embedding("wav2vec_se", dataset_name, label_name)
|
127 |
+
get_embedding(W2VBERTEmbedding, "w2v_bert_se", dataset_name, data_split)
|
128 |
+
cluster_embedding("w2v_bert_se", dataset_name, label_name)
|
129 |
+
get_embedding(XLSR300MEmbedding, "xlsr_300m_se", dataset_name, data_split)
|
130 |
+
cluster_embedding("xlsr_300m_se", dataset_name, label_name)
|
131 |
+
get_embedding(XLSR1BEmbedding, "xlsr_1b_se", dataset_name, data_split)
|
132 |
+
cluster_embedding("xlsr_1b_se", dataset_name, label_name)
|
133 |
+
get_embedding(XLSR2BEmbedding, "xlsr_2b_se", dataset_name, data_split)
|
134 |
+
cluster_embedding("xlsr_2b_se", dataset_name, label_name)
|
135 |
|
136 |
|
137 |
if __name__ == '__main__':
|
138 |
+
# main("asahi417/voxceleb1-test-split", "test", "speaker_id")
|
139 |
+
# main("ylacombe/expresso", "train", "speaker_id")
|
140 |
+
# main("ylacombe/expresso", "train", "style")
|
141 |
+
main("asahi417/j-tube-speech", "test", "speaker_id")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
|
143 |
|
144 |
|