"""Meta's XLS-R based speaker embedding. - feature dimension: 768 - source: https://huggingface.co/facebook/wav2vec2-large-xlsr-53 """ from typing import Optional import torch import librosa import numpy as np from transformers import AutoFeatureExtractor, AutoModelForPreTraining class XLSRSE: def __init__(self): self.processor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-large-xlsr-53") self.model = AutoModelForPreTraining.from_pretrained("facebook/wav2vec2-large-xlsr-53") self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") self.model.to(self.device) self.model.eval() def get_speaker_embedding(self, wav: np.ndarray, sampling_rate: Optional[int] = None) -> np.ndarray: # audio file is decoded on the fly if sampling_rate != self.processor.sampling_rate: wav = librosa.resample(wav, orig_sr=sampling_rate, target_sr=self.processor.sampling_rate) inputs = self.processor(wav, sampling_rate=self.processor.sampling_rate, return_tensors="pt") with torch.no_grad(): outputs = self.model(**{k: v.to(self.device) for k, v in inputs.items()}) return outputs.projected_states.mean(1).cpu().numpy()[0] # return outputs.projected_quantized_states.mean(1).cpu().numpy()[0]