"""Meta's XLS-R based speaker embedding. - feature dimension: 768 - source: https://huggingface.co/docs/transformers/en/model_doc/wav2vec2#transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForPreTrainingOutput """ from typing import Optional import torch import librosa import numpy as np from transformers import AutoFeatureExtractor, AutoModelForPreTraining class Wav2VecEmbedding: def __init__(self, ckpt: str = "facebook/wav2vec2-large-xlsr-53"): self.processor = AutoFeatureExtractor.from_pretrained(ckpt) self.model = AutoModelForPreTraining.from_pretrained(ckpt) self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") self.model.to(self.device) self.model.eval() def get_speaker_embedding(self, wav: np.ndarray, sampling_rate: Optional[int] = None) -> np.ndarray: # audio file is decoded on the fly if sampling_rate != self.processor.sampling_rate: wav = librosa.resample(wav, orig_sr=sampling_rate, target_sr=self.processor.sampling_rate) inputs = self.processor(wav, sampling_rate=self.processor.sampling_rate, return_tensors="pt") with torch.no_grad(): outputs = self.model(**{k: v.to(self.device) for k, v in inputs.items()}) return outputs.projected_states.mean(1).cpu().numpy()[0] class XLSR2BEmbedding(Wav2VecEmbedding): def __init__(self): super().__init__("facebook/wav2vec2-xls-r-2b") class XLSR1BEmbedding(Wav2VecEmbedding): def __init__(self): super().__init__("facebook/wav2vec2-xls-r-1b") class XLSR300MEmbedding(Wav2VecEmbedding): def __init__(self): super().__init__("facebook/wav2vec2-xls-r-300m")