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Abstract

The geometry of the spinning black holes of standard Einstein theory

in 2+1 dimensions, with a negative cosmological constant and without cou-

plings to matter, is analyzed in detail. It is shown that the black hole arises

from identifications of points of anti-de Sitter space by a discrete subgroup of

SO(2, 2). The generic black hole is a smooth manifold in the metric sense.

The surface r = 0 is not a curvature singularity but, rather, a singularity in

the causal structure. Continuing past it would introduce closed timelike lines.

However, simple examples show the regularity of the metric at r = 0 to be

unstable: couplings to matter bring in a curvature singularity there. Kruskal

coordinates and Penrose diagrams are exhibited. Special attention is given to

the limiting cases of (i) the spinless hole of zero mass, which differs from anti-

de Sitter space and plays the role of the vacuum, and (ii) the spinning hole

of maximal angular momentum . A thorough classification of the elements of

the Lie algebra of SO(2, 2) is given in an Appendix.

PACS numbers 04.20 Jb, 97-60. Lf.
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1 Introduction

The black hole is one of the most fascinating structures that has ever emerged out

of the theory of gravitation. And yet, it would seem fair to say, we are far from fully

understanding it. It is therefore fortunate that full-fledged black holes have been

found to exist[1] in the transparent setting of 2+1 standard Einstein gravity[2].

The purpose of this article is to study in detail the geometry of the 2+1 black

hole without electric charge[3]. These results on the black hole geometry were only

announced and briefly summarized in[1].

The plan of the article is the following: Section 2 deals with the action principle

and its Hamiltonian version. The Hamiltonian is specialized to the case of axially

symmetric time independent fields and the equations of motion are solved. The

resulting metric has two integration constants which are next identified as the mass

and angular momentum. This identification is achieved through an analysis of the

surface integrals at spacelike infinity that must be added to the Hamiltonian in order

to make it well defined. It is then shown that for a certain range of values of the

mass and angular momentum the solution is a black hole. This black hole is shown

to be quite similar to its 3+1 counterpart -the Kerr solution. It has an ergosphere

and an upper bound in angular momentum for any given mass.

The discussion of section 2 focuses on the physical properties of the black hole

and ignores a question that must have been needling the geometer hiding within

every theorist. The spacetime geometry of the black hole is one of constant negative

curvature and therefore it is, locally, that of anti-de Sitter space. Thus, the black

hole can only differ from anti-de Sitter space in its global properties. More precisely,

as we shall see, the black hole arises from anti-de Sitter space through identifications

of points of the latter by means of a discrete subgroup of its symmetry group[4].

Section 3 is devoted to this issue. The identifications are explicitly given and are,

in particular, used to show that the black hole singularity at r = 0 is not one in

the metric, which is regular there, but rather a singularity in the causal structure.

Continuing past r = 0 would bring in closed timelike lines. When there is no angular

momentum an additional pathology appears at r = 0, a singularity in the manifold

structure of the type present in the Taub-NUT space. This is dealt with in Appendix

B.
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Once the identifications are geometrically understood, we pass, in Section 4, to

exhibit special coordinate systems which reveal the causal structure. In particular,

Kruskal coordinates are defined and the Penrose diagrams are drawn. Special issues

pertaining to the extreme rotating black hole with non-zero mass and to the zero

mass limit of a non-rotating hole ( “vacuum”) are analyzed. Section 5 is devoted

to some concluding remarks, showing the instability of the regularity of the metric

at r2 = 0 in the presence of matter. It is also briefly discussed how “chronology is

protected” in the 2+1 black hole.

The classification of the elements of the Lie algebra of the symmetry group

SO(2, 2) is given in Appendix A.

2 Action Principle, Equations of Motion

and their Solutions.

2.1 Action Principle

The action in lagrangian form may be taken to be

I =
1

2π

∫ √−g
[

R + 2l−2
]

d2xdt + B′, (2.1)

where B′ is a surface term and the radius l is related to the cosmological constant

by −Λ = l−2. [ Note that, for convenience in what follows, the numerical factor

(16πG)−1 in front of the action is taken to be (2π)−1, i.e., we set the gravitational

constant G, which has the dimensions of an inverse energy, equal to 1
8
].

Extremization of the action with respect to the spacetime metric gµν(x, t), yields

the Einstein field equations

Rµν −
1

2
gµν(R + 2l−2) = 0 (2.2)

which, in a three dimensional spacetime, determine the full Riemann tensor as

Rµνλρ = −l−2(gµλgνρ − gνλgµρ) (2.3)

describing a symmetric space of constant negative curvature.

One may pass to the hamiltonian form of (2.1), which reads
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I =
∫

[

πij ġij − N⊥H⊥ − N iHi

]

d2xdt + B (2.4)

The surface term B will be discussed below. It differs from the B′ appearing in

the lagrangian form because the corresponding volume integrals differ by a surface

term. The surface deformation generators H⊥ ,Hi are given by

H⊥ = 2πg−1/2(πijπij − (πi
i)

2) − (2π)−1g1/2(R + 2/l2) (2.5)

Hi = −2πj
i/j (2.6)

Extremizing the hamiltonian action with respect to the the lapse and shift func-

tions N⊥, N i, yields the constraint equations H⊥ = 0 and Hi = 0 which are the

⊥,⊥ and ⊥, i components of (2.2). Extremization with respect to the spatial metric

gij and its conjugate momentum πij , yields the purely spatial part of the second

order field equations (2.2), rewritten as a hamiltonian system of first order in time.

2.2 Axially symmetric stationary field

One may restrict the action principle to a class of fields that possess a rotational

Killing vector ∂/∂φ and a timelike Killing vector ∂/∂t. If the radial coordinate is

properly adjusted, the line element may be written as

ds2 = −(N⊥)2(r)dt2 + f−2(r)dr2 + r2(Nφ(r)dt + dφ)2

0 ≤ φ < 2π, t1 ≤ t ≤ t2 (2.7)

The form of the momenta πij may be obtained from (2.7) through their relation

πij = −(1/2π)g−1/2(Kij −Kgij) with the extrinsic curvature Kij , which, for a time-

independent metric, simply reads 2N⊥Kij = (Ni|j + Nj|i). This gives as the only

component of the momentum,

πr
φ =

l

2π
p(r) (2.8)

If expressions (2.7), (2.8) are introduced in the action, one finds

I = −(t2 − t1)
∫

dr
[

N(r)H(r) + NφHφ

]

+ B (2.9)
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with

H ≡ 2πf(r)H⊥ = 2l2
p2

r3
+ (f 2)′ − 2

r

l2
(2.10)

Hφ = −2lp′ (2.11)

N(r) = f−1N⊥ (2.12)

2.3 Solutions

To find solutions under the assumptions of time independence and axial symmetry,

one must extremize the reduced action (2.9). Variation with respect to N and Nφ,

yields that the generators H and Hφ must vanish. These constraint equations are

readily solved to give

p = − J

2l

f 2 = −M +
(

r

l

)2

+
J2

4r2
(2.13)

where M and J are two constants of integration, which will be identified below as

the mass and angular momentum, respectively.

Variation of the action with respect to f 2 and p yields the equations

N ′ = 0

(Nφ)′ +
2lp

r3
N = 0 (2.14)

which determine N and Nφ as

N = N(∞)

Nφ = − J

2r2
N(∞) + Nφ(∞) (2.15)

The constants of integration N(∞) and Nφ(∞) are part of the specification of

the coordinate system, which is not fully fixed by the form of the line element (2.7)

(see below).
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2.4 Surface integrals at infinity

2.4.1 Quick analysis

We will be interested in including in the variational principle the class of fields that

approach our solution (2.13), (2.15) at spacelike infinity. This means that the action

should have an extremum under variations of gij and πij that for large r approach

the variations of the expressions (2.13), for any δM and δJ and for fixed N(∞),

Nφ(∞) . However, as seen most evidently from the reduced form (2.9) of the action,

upon varying gij and πij one picks up a surface term. That is, one finds

δI = (t2 − t1)[N(∞)δM − Nφ(∞)δJ ] + δB

+(Terms vanishing when the equations of motion hold) (2.16)

Now, one must demand that when the equations of motion hold, the variation

of the action should be zero[5]. Therefore, the boundary term B in the action must

be adjusted so as to cancel the first two terms on the right side of (2.16). Thus, we

put

B = (t2 − t1)(−N(∞)M + Nφ(∞)J) (2.17)

Equation (2.17) identifies M as the mass and J as the angular momentum. This

is because they appear as conjugates to the asymptotic displacements N(∞) and

Nφ(∞). (The minus sign in front of N(∞) appears because, conventionally, one

introduces a minus sign in the generator when the displacement is along a timelike

direction.) That Nφ is the angular displacement is evident. However, the fact that

the rescaled lapse N given by (2.12) appears in (2.17) rather than the original N⊥,

deserves explanation. The reason is the following. The normal component of the

deformation that joins the surface of time t and that of time t + δt is δξ = nN⊥δt,

where n is the unit normal. But the unit normal does not approach a Killing vector

at infinity. If one multiplies it by f , one obtains, at infinity, a Killing vector K = nf

whose norm K · K = −f 2 is independent of N(∞). The displacement N(∞)δt

(“Killing time”) is the component of the deformation δξ along K.
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2.4.2 Detailed analysis

The preceding argument gives a quick way of obtaining the surface integrals that

must be added to the action. It also puts in evidence the physical meaning of

M and J . However, a more careful analysis is needed. One knows that in a gauge

theory such as General Relativity the conserved quantities are related to the asymp-

totic symmetry group. This fact already emerged in the previous discussion where

“displacements at infinity” played the key role. For 2+1 spacetime dimensions

with a negative cosmological constant, this asymptotic group is infinite dimensional

and contains SO(2, 2) as a subgroup. The asymptotic Killing vectors ∂/∂φ and

K = N(∞)−1∂t that appeared above are two of the generators in the Lie alge-

bra of SO(2, 2). Thus, what we have called “Killing time displacements” are not

“translations” but -rather- SO(2, 2) boosts.

The general analysis of the asymptotic symmetry group of 2+1 gravity has been

given in [6]. We briefly recall here its key aspects and apply them to the present

treatment.

One considers all metrics that for large r become

ds2 −→ −
(

r

l

)2

dt2 +
(

r

l

)2

dr2 + r2dφ2, (2.18)

[There is no loss of generality -in this context- in taking N(∞) = 1 and Nφ(∞) = 0.

One must only remember that for any given spacetime the surface integrals are to

be calculated in a coordinate system obeying these conditions.]

The precise way in which ds2 approaches (2.18) for large r is obtained by acting

on the solution (2.13), (2.15), with all possible anti-de Sitter group transformations.

The rationale for this procedure is that one wants to have at least SO(2, 2) as

an asymptotic symmetry group. This is because the metric (2.18) coincides with

the asymptotic form of the anti-de Sitter metric, which has SO(2, 2) as its (exact)

symmetry group. The remarkable feature is that the resulting class of allowed

asymptotic metrics admits a much larger symmetry group.

The asymptotic symmetry group turns out to be the conformal group. The con-

formal group may be defined as the group of all transformations that leave invariant

the cylinder at infinity, up to a Weyl rescaling. The conformal Killing vectors obey
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ξα;β + ξβ;α − 1

2
gαβξλ

;λ = 0 (2.19)

The Lie algebra of the conformal group consists of two copies of the Virasoro

algebra. Therefore the conserved charges of 2+1 gravity are two sets Ln, Kn of

Virasoro generators (n = 0,±1,±2, ....). Of these, the six SO(2, 2) generators are

L0, L1, L−1, K0, K1, K−1, which form a subalgebra .

The Ln and Kn obey the Virasoro algebra with a central charge proportional to

the radius of curvature. One has, in terms of non-quantum Poisson brackets,

[Ln, Lm] = −i{(n − m)Ln+m + l · n(n2 − 1)δn,−m}
[Kn, Km] = −i{(n − m)Kn+m + l · n(n2 − 1)δn,−m} (2.20)

[Ln, Km] = 0

In the normalization for the central charge that has become standard in string

theory, one has

c = 12l/h̄ (2.21)

The metric given by (2.13), (2.15) has only two charges which are non-zero

(M = K0 + L0, J = K0 − L0). However, by acting with the asymptotic group one

can endow it with other charges, much as by boosting a Schwarzschild solution one

may endow it with linear momentum.

2.5 The Black Hole

The lapse function N⊥ vanishes for two values of r given by

r± = l





M

2



1 ±
√

1 −
(

J

Ml

)2








1/2

. (2.22)

whereas g00 vanishes at

rerg = lM1/2 (2.23)

These three special values of r obey
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r− ≤ r+ ≤ rerg (2.24)

Just as it happens in 3+1 dimensions for the Kerr metric, r+ is the black hole

horizon, rerg is the surface of infinite redshift and the region between r+ and rerg is

the ergosphere. In order for the solution to describe a black hole, one must have

M > 0, |J | ≤ Ml. (2.25)

In the extreme case |J | = Ml, both roots of N2 = 0 coincide. Note that the radius

of curvature l = (−Λ)−1/2 provides the length scale necessary in order to have a

horizon in a theory in which the mass is dimensionless. If one lets l grow very large

the black hole exterior is pushed away to infinity and one is left just with the inside.

The vacuum state, namely what is to be regarded as empty space, is obtained

by making the black hole disappear. That is, by letting the horizon size go to zero.

This amounts to letting M → 0, which requires J → 0 on account of (2.25). One

thus obtains the line element

ds2
vac = −(r/l)2dt2 + (r/l)−2dr2 + r2dφ2. (2.26)

As M grows negative one encounters the solutions studied previously in [7]. The

conical singularity that they possess is naked, just as the curvature singularity of

a negative mass black hole in 3 + 1 dimensions. Thus, they must, in the present

context, be excluded from the physical spectrum. There is however an important

exceptional case. When one reaches M = −1 and J = 0 the singularity disappears.

There is no horizon, but there is no singularity to hide either. The configuration

ds2 = −(1 + (r/l)2)dt2 + (1 + (r/l)2)−1dr2 + r2dφ2 (2.27)

(anti-de Sitter space) is again permissible.

Therefore, one sees that anti-de Sitter space emerges as a “bound state”, sepa-

rated from the continuous black hole spectrum by a mass gap of one unit. This state

cannot be deformed continuously into the vacuum (2.26), because the deformation

would require going through a sequence of naked singularities which are not included

in the configuration space.
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Note that the zero point of energy has been set so that the mass vanishes when

the horizon size goes to zero. This is quite natural. It is what is done in 3+1

dimensions. In the past, the zero of energy has been adjusted so that anti-de Sitter

space has zero mass instead. Quite apart from this difference, the key point is that

the black hole spectrum lies above the limiting case M = 0.

We now pass, in the next section, to a detailed study of the geometry of the

black hole.

3 Black Hole as Anti-de Sitter Space Factored by

a Subgroup of its Symmetry Group

We will show in this section that the black hole arises from anti-de Sitter space

through identifications by means of a discrete subgroup of its isometry group SO(2, 2).

This implies that the black hole is a solution of the source-free Einstein equations

everywhere, including r = 0. As we shall also see, the type of “singularity” that

is found at r = 0 is -generically- one in the causal structure and not in the curva-

ture, which is everywhere finite (and constant). It should be emphasized that this

statement means that r = 0 is not a conical singularity.

To proceed with the analysis we first review the properties of anti-de Sitter space.

3.1 Anti-de Sitter Space in 2+1 Dimensions

3.1.1 Metric

Anti-de Sitter space can be defined in terms of its embedding in a four dimensional

flat space of signature (−− ++)

ds2 = −du2 − dv2 + dx2 + dy2 (3.1)

through the equation

− v2 − u2 + x2 + y2 = −l2. (3.2)

A system of coordinates covering the whole of the manifold may be introduced

by setting
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u = l cosh µ sinλ, v = l cosh µ cos λ (3.3)

with l sinh µ =
√

x2 + y2 and 0 ≤ µ < ∞, 0 ≤ λ < 2π. Inserting (3.3) into (3.1)

gives

ds2 = l2
(

− cosh2 µ dλ2 +
dx2 + dy2

l2 + x2 + y2

)

(3.4)

an expression that can be further simplified by passing to polar coordinates in the

x − y plane

x = l sinh µ cos θ, y = l sinh µ cos θ, (3.5)

which yields

ds2 = l2
[

− cosh2 µdλ2 + dµ2 + sinh2 µdθ2
]

(3.6)

for the metric of anti-de Sitter space.

Because λ is an angle, there are closed timelike curves in anti-de Sitter space (for

instance µ = µ0, θ = θ0). For this reason, one “unwraps” the λ coordinate, that is,

one does not identify λ with λ+2π. The space thus obtained is the universal covering

of anti-de Sitter space. It is this space which, by a common abuse of language, will

be called anti-de Sitter space in the sequel. If the unwrapped λ is denoted by t/l

and if one sets r = l sinh µ, one obtains

ds2 = ((r/l)2 + 1)dt2 + ((r/l)2 + 1)−1dr2 + r2dθ2 (3.7)

which is the metric (2.7) with M = −1, J = 0 (and φ replaced by θ).

3.1.2 Isometries

By construction, the anti-de Sitter metric is invariant under SO(2, 2). The Killing

vectors are

Jab = xb
∂

∂xa
− xa

∂

∂xb
(3.8)

where xa = (v, u, x, y) or, in detail
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J01 = v∂u − u∂v J02 = x∂v + v∂x

J03 = y∂v + v∂y J12 = x∂u + u∂x

J13 = y∂u + u∂y J23 = y∂x − x∂y

(3.9)

The vector J01 generates “time displacements” (J01 = ∂λ) whereas J23 generates

rotations in the x− y plane (J23 = ∂θ). The most general Killing vector is given by

1
2
ωabJab, ωab = −ωba (3.10)

and is thus determined by an antisymmetric tensor in R4.

3.1.3 Poincaré Coordinates

The coordinates defined by

z =
l

u + x
, β =

y

u + x
, γ =

−v

u + x
. (3.11)

are called Poincaré coordinates. They only cover part of the space, namely just one

of the infinitely many regions where u + x has a definite sign (see Fig. 1). These

coordinates are therefore not well adapted to the study of global properties. In

terms of (z, β, γ) the anti-de Sitter line element reads

ds2 = l2
[

dz2 + dβ2 − dγ2

z2

]

. (3.12)

For u + x > 0 one has z > 0 and for u + x < 0 one has z < 0. One can also find

analogous Poincaré coordinates for each of the regions where u − x has a definite

sign.

3.2 Identifications

3.2.1 Identification subgroup associated with a Killing vector

Any Killing vector ξ defines a one parameter subgroup of isometries of anti-de Sitter

space

P → etξP. (3.13)
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The mappings of (3.13) for which t is an integer multiple of a basic “step”, taken

conventionally as 2π,

P → etξP, t = 0,±2π,±4π, .... (3.14)

define what we will call the identification subgroup

Since the transformations (3.14) are isometries, the quotient space obtained by

identifying points that belong to a given orbit of the identification subgroup, inherits

from anti-de Sitter space a well defined metric which has constant negative curvature.

The quotient space thus remains a solution of the Einstein equations.

The identification process makes the curves joining two points of anti-de Sitter

space that are on the same orbit to be closed in the quotient space. In order for

the quotient space to have an admissible causal structure, these new closed curves

should not be timelike or null. A necessary condition for the absence of closed

timelike lines is that the Killing vector ξ be spacelike,

ξ · ξ > 0 (3.15)

This condition is not sufficient in general. However, as it will be shown in Sec. 3.2.5,

it turns out to be so for the particular Killing vectors employed in the identifications

leading to the black hole.

3.2.2 Singularities in the causal structure

There are some Killing vectors that do fulfill (3.15) everywhere in anti-de Sitter

space, for example ∂
∂θ

, where θ is the angular coordinate appearing in (3.6).

However, the Killing vectors appearing in the identifications that give rise to the

black hole are timelike or null in some regions. These regions must be cut out from

anti-de Sitter space to make the identifications permissible. The resulting space

-which we denote (adS)’- is invariant under (3.13) because the norm of a Killing

vector is constant along its orbits. Hence, the quotient can still be taken.

The space (adS)’ is geodesically incomplete since one can find geodesics that go

from ξ · ξ > 0 to ξ · ξ < 0. From the point of view of (adS)’ -i.e., prior to the

identifications- it is quite unnatural to remove the regions where ξ · ξ is not positive.

However, once the identifications are made, the frontier of the region ξ · ξ > 0, i.e.,
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the surface ξ · ξ = 0, appears as a singularity in the causal structure of spacetime,

since continuing beyond it would produce closed timelike curves.

For this reason, the region ξ · ξ = 0 may be regarded as a true singularity in the

quotient space. If this point of view is taken, -as it is done here- the only incomplete

geodesics are those that hit the singularity, just as in the 3+1 black hole. It should

be stressed that the surface ξ ·ξ = 0 is a singularity only in the causal structure. It is

not a conical curvature singularity of the type discussed in [7]. Indeed, the quotient

space is smooth [8]. Its curvature tensor is everywhere regular and given by

Rµνλρ = −l−2(gµλgνρ − gνλgµρ). (3.16)

The fundamental group of the quotient space is non trivial and isomorphic to

the identification subgroup. The orbits of the Killing vectors define closed curves

that cannot be continuously shrunk to a point. The “origin” ξ · ξ = 0 is neither

a point nor a circle. It is a surface. The topology of ξ · ξ = 0, and also that of

the whole quotient space, can be inferred by inspection of the Penrose diagram in

Fig. 4c. One finds that the black hole is topologically R2 × S1 and that the surface

ξ · ξ = 0 has infinitely many connected pieces, each of which is a cylinder whose

circular sections are null.

3.2.3 Explicit form of the identifications

We claim that the black hole solutions are obtained by making identifications of the

type described above by the discrete group generated by the Killing vector

ξ =
r+

l
J12 −

r−
l

J03 − J13 + J23 (3.17)

where the Jab are given by (3.8). The antisymmetric tensor ωab defined by (3.17)

through ξ = 1
2
ωabJab, is easily verified to possess real eigenvalues, namely, ±r+/l

and ±r−/l. The corresponding Casimir invariants I1=ωabω
ab and I2 = 1

2
ǫabcdω

abωcd

are

I1 = − 2

l2
(r2

+ + r2
−) = −2M, I2 = − 4

l2
r+r− = −2

|J |
l

(3.18)
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According to the classification given in Appendix A the Killing vector (3.17) is

of type Ib when r+ 6= r−, of type IIa when r+ = r− 6= 0 and of type III+ when

r+ = r− = 0.

To prove that the identifications by e2πkξ yield the black hole metric, we start

by considering the non - extreme case r2
+ − r2

− > 0. In that case, by performing an

SO(2, 2) transformation, one can eliminate the last term in (3.17) and replace ξ by

the simpler expression

ξ′ =
r+

l
J12 −

r−
l

J03 (3.19)

This follows from the analysis of Appendix A, where it is shown that any SO(2, 2)

element with unequal real eigenvalues can be brought into the form (3.19) by an

SO(2, 2) transformation. Alternatively, one may rewrite (3.17) in Poincaré coordi-

nates as

− ξ =
r+

l

(

z
∂

∂z
+ β

∂

∂β
+ γ

∂

∂γ

)

− r−
l

(

β
∂

∂γ
+ γ

∂

∂β

)

+
∂

∂β
(3.20)

and observe that the shifts

β → β − r+

r2
+ − r2

−
(3.21)

γ → γ − r−
r2
+ − r2

−
(3.22)

-which are SO(2, 2) isometries- eliminate ∂
∂β

in (3.20).

The norm of ξ′ is given by

ξ′ · ξ′ =
r2
+

l2
(u2 − x2) +

r2
−
l2

(v2 − y2) (3.23)

or, using (3.2),

ξ′ · ξ′ =
r2
+ − r2

−
l2

(u2 − x2) + r2
− (3.24)

Accordingly, the allowed region where ξ′ · ξ′ > 0 is

−r2
−l2

r2
+ − r2

−
< u2 − x2 < ∞. (3.25)
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The region ξ′ · ξ′ > 0 can be divided in an infinite number of regions of three

different types bounded by the null surfaces u2−x2 = 0 or v2−y2 = l2−(u2−x2) = 0.

These regions are:

Regions of type I: Smallest connected regions with u2−x2 > l2 and y and u of

definite sign. These regions have no intersection with y = 0 since this would violate

u2 − x2 = l2 + y2 − v2 > l2. These regions are called “the outer regions”. The norm

of the Killing vector fulfills r2
+ < ξ′ · ξ′ < +∞.

Regions of type II: Smallest connected regions with 0 < u2 − x2 < l2 and

u and v of definite sign. These regions are called “the intermediate regions”. The

norm of the Killing vector fulfills r2
− < ξ′ · ξ′ < r2

+.

Regions of type III: Smallest connected regions with − r2
−

l2

r2
+
−r2
−

< u2 − x2 < 0

and x and v of definite sign. These regions are called “the inner regions” and only

exist for r− 6= 0. They do not intersect the x = 0 plane. The norm of the Killing

vector fulfills 0 < ξ′ · ξ′ < r2
−

The frontiers between the various regions are lightlike surfaces (the horizons!).

Each region of type I has one region of type II in its future and one in its past.

For r− 6= 0, two situations are found for each region of type II: (i) it has one region

of type II and two regions of type I in its future as well as one region of type II

and two regions of type III in its past, or conversely (ii) the same description with

I and III interchanged. Finally, each region of type III has one region of type II

in its future and another one in its past. This is shown in Figures (2.a,b,c). Let

us now choose three contiguous regions of types I, II and III (one of each type).

In these regions we introduce a (t, r, φ)- parametrization as follows (we assume for

definiteness u, y > 0 in I, u, −v > 0 in II and x, −v > 0 in III).

Region I. r+ < r:

u =
√

A(r) cosh φ̃(t, φ)

x =
√

A(r) sinh φ̃(t, φ)

y =
√

B(r) cosh t̃(t, φ)

v =
√

B(r) sinh t̃(t, φ) (3.26)

Region II. r− < r < r+:

u =
√

A(r) cosh φ̃(t, φ)
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x =
√

A(r) sinh φ̃(t, φ)

y = −
√

−B(r) sinh t̃(t, φ)

v = −
√

−B(r) cosh t̃(t, φ) (3.27)

Region III. 0 < r < r−:

u =
√

−A(r) sinh φ̃(t, φ)

x =
√

−A(r) cosh φ̃(t, φ)

y = −
√

−B(r) sinh t̃(t, φ)

v = −
√

−B(r) cosh t̃(t, φ) (3.28)

In (3.26), (3.27) and (3.28) we have set

A(r) = l2
(

r2−r2
−

r2
+
−r2
−

)

, B(r) = l2
(

r2−r2
+

r2
+
−r2
−

)

t̃ = (1/l) (r+t/l − r−φ) , φ̃ = (1/l) (−r−t/l + r+φ) (3.29)

In the coordinates t, r, φ, the metric becomes

ds2 = −(N⊥)2dt2 + (N⊥)−2dr2 + r2(Nφdt + dφ)2 (3.30)

with −∞ < t < ∞, −∞ < φ < ∞ i.e., it is the black hole metric but with φ a

non-periodic coordinate. The Killing vector ξ′ reads

ξ′ =
∂

∂φ
(3.31)

By making the identification

φ → φ + 2kπ, (3.32)

one gets the black hole spacetime as claimed above.

It is clear from the construction that the coordinate system t, r, φ does not

cover the domain ξ′ · ξ′ > 0 entirely, since it only covers one region of each type. If

r− = 0 (in which case region III does not exist), this is only half of one connected

component of the domain ξ′ · ξ′ > 0. If r− 6= 0, each of the regions I, II and
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III should be repeated an infinite number of times to completely cover the domain

ξ′ · ξ′ > 0 which is now connected. This infinite pattern follows from the fact that

one is dealing with the universal covering space of anti-de Sitter space and this will

reappear in the Penrose diagrams given below.

It is worthwhile emphasizing that it is the identification (3.32) that makes the

black hole. If one does not say that φ is an angle, one simply has a portion of anti-de

Sitter space and the horizon is just that of an accelerated observer[9].

3.2.4 Extreme case

The above derivation cannot be repeated in the extreme case r+ = r−. This is

because the Killing vector (3.17) is now of a different type than (3.19). According

to the classification given in the Appendix, when r+ = r−, (3.17) is of type IIa,

while (3.19) is of type Ib with doubly degenerate roots. Hence, there is no SO(2, 2)

transformation mapping one to the other.

One can nevertheless argue that the identifications for anti-de Sitter space gener-

ated by (3.17) yield the extreme black hole without exhibiting the precise coordinate

transformation that brings ξ into the form ∂/∂φ. The argument runs as follows. The

metric (3.30) is regular even if one sets r2
+ = r2

−. When φ is not identified, it de-

scribes a portion of anti-de Sitter space for any value of r2
+−r2

− > 0, hence it does so

also in the limit r+ − r− → 0. Similarly, ∂/∂φ is a Killing vector for any value of r−

and r+. By continuity, its Casimir invariants remain equal to I1 = −2(r2
+ + r2

−)/l2

and I2 = −4r+r−/l2 in the limit r+−r− → 0. Hence, in the extreme case the vector

∂/∂φ remains type Ib (with coincident roots) or becomes type IIa, since these are

the only two types compatible with the given I1, I2. It is the latter alternative that

is realized. Indeed, type Ib may be excluded by noticing that the corresponding

Killing vector has constant norm equal to r2
+, whereas ∂/∂φ has a space-dependent

norm equal to r2. Thus ∂/∂φ must be of type IIa and, thus, equal to (3.17) [up to

a possible SO(2, 2) transformation that leaves the metric invariant].

The preceding argument already establishes that the black hole is obtained from

anti-de Sitter space by an identification. However, for completeness we exhibit a

change of coordinates in terms of which the identification just makes a coordinate

periodic. The required coordinate transformation can be explicitly given in Poincaré

coordinates. We start with the case M = r+ = r− = 0 (“the vacuum”), which is the
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more illuminating one.

For M = 0, the region ξ · ξ > 0 splits into disjoint regions which are just the

Poincaré patches u + x > 0 or u + x < 0. Hence, to describe a connected domain

where ξ ·ξ > 0, one can just consider a single Poincaré patch. In Poincaré coordinates

the Killing vector ξ is − ∂
∂β

and hence, the identifications

β → β + 2kπ (3.33)

in (3.12) lead to the black hole metric with M = 0 upon setting z = 1/r, β = φ

and γ = t.

[Note that as depicted in Fig 1, the horizon-singularity r = 0 are the null surfaces

u + x = 0 delimiting the Poincaré region. Because the Killing vector ξ is again

spacelike on the other side of u + x = 0, one can continue the solution with zero

mass through r = 0 to negative values of r without encountering closed timelike

curves. By doing so one includes, however, the closed lightlike curves that lie on the

null surface u + x = 0, as well as some singularities in the manifold structure of the

type discussed in Appendix B.]

The coordinate transformation bringing the anti-de Sitter metric to the extreme

case with M 6= 0 (and non-periodic in φ) is more complicated. One needs in that

case more than one Poincaré patch to cover the black-hole spacetime. Actually an

infinite number of sets of patches is necessary, with each set containing one patch

of each of the four types u + x > 0, u + x < 0, u − x > 0, u − x < 0. We merely

give here that transformation in one of the patches u + x > 0, for r > r+.

β =
1

2

(

T

l
+ φ + e2r+φ − 1

2r+

)

(3.34)

γ =
1

2

(

T

l
+ φ − e2r+φ +

1

2r+

)

(3.35)

z =

[

1

2r+
(r2 − r2

+)

]−1/2

er+φ (3.36)

where T is given by

T = 2t − l2r+

r2 − r2
+

(3.37)
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and fulfills dT = 2dt+ 2r+l2rdr
(r2−r2

+
)2

. By substituting (3.34)-(3.36) in the Poincaré metric,

one gets the extreme black hole metric (with Nφ adjusted so that Nφ(r+) = 0).

3.2.5 Absence of Closed Timelike Curves

We now complete the argument that there are no closed causal curves in the black

hole solution. That is, we show that there is no non-spacelike, future-directed, curve

lying in the region ξ · ξ > 0 of anti-de Sitter space and joining a point and its image

generated by exp2πξ.

Since the surfaces r = r+ and r = r− are null, a causal curve which leaves any

one of the regions of types I, II or III through r = r+ or r = r− can never re-enter

it. Furthermore, since the images of a point are all in the same region as that point,

it is sufficient to consider each of these regions separately.

In each of the regions of types I, II or III, the anti-de Sitter metric takes the

form

ds2 = −(N⊥(r))2dt2 + (N⊥(r))−2dr2 + r2(Nφdt + dφ)2 (3.38)

where φ goes from −∞ to +∞. Consider a causal curve t(λ) r(λ) and φ(λ), where

the parametrization is such that the tangent vector (dt/dλ, dr/dλ, dφ/dλ) does not

vanish for any value of λ. The causal property of the curve reads

(N⊥)2

(

dt

dλ

)2

− (N⊥)−2

(

dr

dλ

)2

− r2

(

Nφ dt

dλ
+

dφ

dλ

)2

≤ 0. (3.39)

In order to join the point (t0, r0, φ0) and (t0, r0, φ0 + 2kπ), the causal curve

would have to be such that dt/dλ = 0 for some value of λ, since t comes back to its

initial value. But then, if (N⊥)2 > 0 it follows from (3.39) that dr/dλ = dφ/dλ = 0,

leading to a contradiction. Similarly, if (N⊥)2 < 0 (region II), the fact that dr/dλ =

0 for some value of λ implies dt/dλ = dφ/dλ = 0, and the required contradiction. ✷

It should be observed that if one were to admit the region ξ ·ξ ≤ 0 in the solution,

one could leave and re-enter the regions of type III through the surface ξ · ξ = 0,

which is timelike for J 6= 0. (This is not possible when J = 0 because the surface

ξ · ξ = 0 is then null.) One would find that there are also closed timelike curves

passing through points in region III. The boundary between the region where there

are no closed causal curves and the region in which there are is then the null surface
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r = r−. From the point of view of an outside observer staying at r > r+, the

inclusion or non-inclusion of the region ξ · ξ ≤ 0 is irrelevant and cannot be probed

since the surface r = r+ remains in all cases an event horizon.

3.2.6 Black Hole has only two Killing vectors

The black hole metric was obtained in Sec. 3.2.3 under the assumption of existence

of two commuting Killing vectors ∂/∂t and ∂/∂φ. One may ask whether there are

any other independent Killing vectors. The answer to this question is in the negative

as we now proceed to show.

Before any identifications are made one has the six independent Killing vectors

Jab of anti-de-Sitter space. However, after the identifications, not all the correspond-

ing vector fields will remain single valued in the quotient space.

A necessary and sufficient condition for an adS vector field η to induce a well

defined vector field on the quotient space is that η be invariant under the transfor-

mation of the identification subgroup,

(exp2πξ)∗η = η (3.40)

For a Killing vector, this condition becomes

(exp2πξ)η(exp2πξ)−1 = η (3.41)

i.e.

[exp2πξ, η] = 0 (3.42)

where ξ and η are viewed as so(2, 2) matrices.

Now, the matrix ξ can be decomposed as

ξ = s + n (3.43)

where (i) s and n commute, (ii) s is semi-simple with real eigenvalues; and (iii)

n is nilpotent (see Appendix A). Accordingly, the semi-simple part of (exp2πξ) is

exp2πs and its nilpotent part is (exp2πs)[(exp2πn) − 1]. Any matrix commuting

with (exp2πξ) must thus separately commute with (exp2πs) and (exp2πn) (the

semi-simple and nilpotent parts of a matrix can be expressed polynomially in terms

of that matrix). This implies both
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[s, η] = 0 (3.44)

(because the eigenvalues of the matrix exp2πs are real and positive, any matrix

commuting with it must also commute with log(exp2πs) = 2πs) and

[n, η] = 0 (3.45)

(the nilpotent matrix n can be expressed polynomially in terms of the nilpotent

matrix [(exp2πn) − 1] and must thus commute with η). It follows from (3.44) and

(3.45) that ξ and η commute,

[ξ, η] = 0. (3.46)

The problem of finding all the Killing vectors of the black hole solution is thus

equivalent to that of finding all the elements of the Lie algebra so(2, 2) that commute

with ξ.

In order to solve equation (3.46) for η, we observe that so(2, 2) = so(2, 1) ⊕
so(2, 1) and decompose accordingly ξ into its self-dual and anti-self-dual parts,

ξ = ξ+ + ξ− (3.47)

Similarly,

η = η+ + η− (3.48)

The Equation (3.46) is equivalent to

[ξ+, η+] = 0, [ξ−, η−] = 0, (3.49)

because self-dual and anti-self-dual elements automatically commute. Now, the only

elements of so(2, 1) that commute with a given non-zero element of so(2, 1) are the

multiples of that element. Therefore, since ξ+ and ξ− are both non-zero for all values

of the black hole parameters we conclude from (3.49)

η+ = αξ+, η− = βξ− α, β ǫ R (3.50)

this shows that the most general Killing vector is a linear combination of ∂/∂t and

∂/∂φ.
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4 Global Structure

The study of global properties of the 2+1 black hole reveals a strong coincidence

with the 3+1 case. The Penrose diagrams and maximal extensions are exactly the

same as those of a 3+1 black hole immersed in anti-de Sitter space.

4.1 Kruskal coordinates

We follow the analysis of [10]. For the line element

ds2 = −(N⊥)2dt2 + (N⊥)−2dr2 + r2(Nφdt + dφ)2 (4.1)

one may introduce a Kruskal coordinate patch around each of the roots of (N⊥)2 = 0

to bring the metric to the form

ds2 = Ω2(du2 − dv2) + r2(Nφdt + dφ)2, (4.2)

where t = t(u, v).

If there is only one root (J = 0) then the Kruskal coordinates cover the whole

space. When two roots coincide, there are no Kruskal coordinates [11].

For definiteness, we start with r+. The Kruskal coordinates around r+ are defined

by

Patch K+:

r− < r ≤ r+



















U+ =
[

(

−r+r+

r+r+

) (

r+r
−

r−r
−

)r
−

/r+

]1/2

sinh a+t

V+ =
[

(

−r+r+

r+r+

) (

r+r
−

r−r
−

)r
−

/r+

]1/2

cosh a+t
(a)

r+ ≤ r < ∞



















U+ =
[

(

r−r+

r+r+

) (

r+r
−

r−r
−

)r
−

/r+

]1/2

cosh a+t

V+ =
[

(

r−r+

r+r+

) (

r+r
−

r−r
−

)r
−

/r+

]1/2

sinh a+t
(b)

(4.3)

with

a+ =
r2
+ − r2

−
l2r+

, (4.4)

The angular coordinate (denoted φ+) is chosen on K+ so that the constant of

integration appearing in the solution of (2.14) is fixed to give

Nφ(r+) = 0. (4.5)
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The metric takes the form (4.2), with the conformal factor

Ω2(r) =
(r2 − r2

−)(r + r+)2

a2
+r2l2

(

r − r−
r + r−

)r
−

/r+

r− < r < ∞. (4.6)

With the choice of φ leading to (4.5), the term Nφdt in (4.2) remains regular at

r+.

Similarly, around r−, one defines

Patch K−:

0 < r ≤ r−



















U− =
[

(

−r+r
−

r+r
−

) (

r+r+

−r+r+

)r+/r
−

]1/2

cosh a−t

V− =
[

(

−r+r
−

r+r
−

) (

r+r+

−r+r+

)r+/r
−

]1/2

sinh a−t
(a)

r− ≤ r ≤ r+



















U− =
[

(

r−r
−

r+r
−

) (

r+r+

−r+r+

)r+/r
−

]1/2

sinh a−t

V− =
[

(

r−r
−

r+r
−

) (

r+r+

−r+r+

)r+/r
−

]1/2

cosh a−t
(b)

(4.7)

with

a− =
r2
− − r2

+

l2r−
. (4.8)

This time, one chooses the angular coordinate φ− so that Nφ(r−) = 0. The metric

takes the form (4.2) with

Ω2(r) =
(r2

+ − r2)(r + r−)2

a2
−r2l2

(

r+ − r

r+ + r

)r+/r
−

0 < r < r+. (4.9)

The overlap of the patches K+ and K− (r− < r < r+) will be called K. Just

as in the 3+1 case one may maximally extend the geometry by glueing together an

infinite number of copies of patches K+, K−. We will not illustrate graphically that

extension in terms of Kruskal coordinates, but will rather go to the more economical

Penrose diagrams.

4.2 Penrose diagrams (r+ 6= r−)

The Penrose diagrams are obtained by the usual change of coordinates

U + V = tan
(

p + q

2

)

U − V = tan
(

p − q

2

)

. (4.10)
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We define the inverse transformation by taking the usual determination of the inverse

tangent, namely the one that lies between −π/2 and +π/2.

Consider first the case J = 0. From (4.10) and (4.3) (with r− = 0) it is easy to

prove that, (i) r = ∞ is mapped to the lines p = ±1
2
π, (ii) the singularity r = 0

is mapped to the lines q = ±1
2
π and (iii) the horizon is mapped to p = ±q. The

Kruskal and Penrose diagrams associated with this geometry are shown in Fig.3.

Next consider the case of the rotating black hole. By making the change of co-

ordinates (4.10) in the two patches defined in Sec.(4.1) we find one Penrose diagram

for each patch. These are shown in Figs. (4a, b).

The regions shown as K in parts (a) and (b) of Fig.4 are to be identified because

they are the overlap. Now, the original black hole coordinates covered K and one

region III in (4.a), and K and one region I in (4.b). However, one wants to obtain

a “maximal causal extension” (i.e., a maximal extension without closed timelike

curves). To this effect one must first include the other two regions in each diagram

and then glue together an infinite sequence of them, as shown in Fig.(4.c).

4.3 Extreme cases M = 0 and M = |J |/l

4.3.1 M = 0

The metric is

ds2 = −(r/l)2dt2 + (r/l)−2dr2 + r2dφ2. (4.11)

Defining the null dimensionless coordinates

u =
t

l
− l

r
, v = −t

l
− l

r
(4.12)

we find

ds2 = r2dudv + r2dφ2. (4.13)

and pass directly to Penrose coordinates by

U = tan 1
2
(p + q), V = tan 1

2
(p − q). (4.14)

The relation between the radial coordinate r and p, q is
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− r = l
cos p + cos q

sin p
, (4.15)

and the metric takes the form

ds2 = l2
dp2 − dq2

sin2 p
+ r2dφ2. (4.16)

From (4.15) it is easy to show that the origin is mapped to the segment of the lines

p = π ± q running from p = 0 to p = π while spacelike infinity is mapped to the

segment of the p = π line that closes the triangle shown in Fig.(5a).

4.3.2 M = |J |/l

The metric is

ds2 = −(r2 − r2
+)2

r2l2
dt2 +

r2l2

(r2 − r2
+)2

dr2 + r2(Nφdt + dφ)2 (4.17)

where r = r+ = l(M/2)1/2 is the horizon. Introducing the null coordinates U = t+r∗

and V = −t + r∗ where r∗ is the tortoise coordinate

r∗ =
∫ dr

(N⊥)2
=

−rl2

2(r2 − r2
+)

+
l2

4r+
ln

∣

∣

∣

∣

∣

r − r+

r + r+

∣

∣

∣

∣

∣

(4.18)

and defining the Penrose coordinates p, q as in (4.14) we obtain the line element

ds2 =
4(N⊥)2l2(dp2 − dq2)

(cos p + cos q)2
+ r2(Nφdt + dφ)2. (4.19)

From
sin p

cos q + cos p
=

−rl

2(r2 − r2
+)

+
l

4r+
ln

∣

∣

∣

∣

∣

r − r+

r + r+

∣

∣

∣

∣

∣

, (4.20)

one sees that the lines r = r+ are at ±45◦, whereas r = 0 is at p = (kπ)+ and r = ∞
at p = (kπ)−. [By p = (kπ)+, we mean that r → 0 as p → kπ from value greater

than kπ, and similarly, r → ∞ as p → kπ from values smaller than kπ]. If we take for

p the usual determination of the arc tangent in (4.14), so that the region 0 < r < r+

is mapped on the triangle bounded by p = 0 (r = 0) and p = q = π, p− q = π, then

we must take in the region r > r+ a different determination. Indeed, one must glue

the triangle corresponding to r > r+ to the triangle corresponding to 0 < r < r+

along the sides r = r+ at 45◦, and not along the vertical sides (which are r = ∞ in

26



the region r > r+ and r = 0 in the region r < r+). For instance, one could map

r > r+ into the triangle bounded by p + q = π, p − q = −π and p = π. Once this is

done, one can go safely across r = r+ because the zero of N⊥ in (4.19) is cancelled

by the zero in the denominator. To achieve the maximal extension one then needs

to include an infinite sequence of triangles as shown in Fig.(5.b) (the original black

hole geometry just included two adjacent triangles).

5 Instability of metric regularity at r2 = 0.

Chronology Protection

The point of view taken in this article is that the region r2 < 0 must be cut out

from the spacetime because it contains closed timelike lines (see Fig.6 for a Penrose

diagram that includes the forbidden region). This is a consistent point of view and

leads to a close analogy with the black hole in 3+1 dimensions. There is, however, a

compelling additional argument for considering the spacetime as ending at r = 0. It

is the fact that the introduction of matter produces a curvature singularity at r = 0.

This can be easily seen in simple examples and we believe it to be a general feature

(with the possible exception of very “fine-tuned” couplings). The first example is

the collapse of a cloud of dust with J = 0 [12]. One can then verify that the matter

will reach infinite density at r=0. In this case only the part of the surface r = 0 that

intersects the history of the dust becomes singular. This is due to the fact that the

dust “probes” only part of the spacetime. However, in the case of a field- such as

the electromagnetic field - which is our second example - all the spacetime is probed.

As it was indicated in[1], the introduction of a Maxwell field that depends only on

the radial coordinate yields an electromagnetic field for which the gauge invariant

scalar FµνF
µν is proportional to r−2 and thus is singular at all points on the surface

r = 0.

Therefore, in view of the curvature singularities that are brought in by matter

couplings, it seems not only reasonable, but also compulsory, to exclude the region

r2 < 0 from the spacetime.

The collapsing dust is also interesting in that it may be regarded as a mechanism

for producing, without effort, closed timelike lines from a perfectly reasonable initial

condition ( with the help of a negative cosmological constant though!). However,
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one sees, first of all, that the closed timelike lines are hidden behind the horizon at

r = r+ > 0 (Fig. 7). But, moreover, if - say - an electromagnetic field is brought in,

a barrier of infinite curvature is introduced at r = 0. This makes the closed timelike

lines not reachable from r2 > 0. In this sense we see that “chronology is protected”

[13] in the 2+1 black-hole.
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Appendix A. One Parameter Subgroups of SO(2, 2)
A.1 Description of the problem

The purpose of this Appendix is to provide a complete classification of the in-

equivalent one-parameter subgroups of SO(2, 2). Two one-parameter subgroups

{g(t)} and {h(t)}, tǫR, are said to be equivalent if and only if they are conjugate

in SO(2, 2), i.e.,

g(t) = k−1h(t)k, kǫSO(2, 2) (A.1)

By an SO(2, 2) rotation of the coordinate axes in R4, one can then map g(t) on

h(t). Since one-parameter subgroups are obtained by exponentiating infinitesimal

transformations, the task at hand amounts to classifying the elements of the Lie

algebra so(2, 2) up to conjugation.

Now, the elements of so(2, 2) are described by antisymmetric tensors ωab = −ωba

in R4. If one conjugates the infinitesimal transformation Ra
b = δa

b + εωa
b by

k ǫSO(2, 2), (kT ηk = η, η = diag(− − ++)), one finds that the antisymmetric

matrix ω ≡ (ωab) transforms as

ω → ω′ = kT ωk, kǫSO(2, 2) (A.2)

Hence we have to classify antisymmetric tensors under the equivalence relation

(A.2).

A.2 Strategy

Any linear operator M can be uniquely decomposed as the sum of a semi-simple

(diagonalizable over the complex numbers) linear operator S and a nilpotent oper-

ator N that commute,

M = S + N, (A.3)

[S, N ] = 0 (A.4)

with

N q = 0 for some q (A.5)
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and

S = L−1(diagonal matrix)L, for some L (A.6)

(Jordan - Chevalley decomposition of M).

The eigenvalues of S coincide with those of M and provide an intrinsic character-

ization of S. When the eigenvalues of S are non-degenerate, the nilpotent operator

N is identically zero and M is thus completely characterized (up to similarity) by

its eigenvalues. However, if some eigenvalues are repeated, N may be non-zero and

M cannot be reconstructed from the knowledge of its eigenvalues: one needs also

information about its nilpotent part (the dimensions of the irreducible invariant

subspaces).

We shall construct the sought-for invariant classification of elements of so(2, 2) by

means of the Jordan - Chevalley decomposition of the operator ωa
b.Since ηab 6= δab

for SO(2, 2), the operator iωa
b is, in general, not hermitian. Accordingly, it may

possess a non-trivial nilpotent part when its eigenvalues are degenerate. The classi-

fication of the possible ωa
b is analogous to the invariant classification of the electro-

magnetic field in Minkowski space and is also reminiscent of the Petrov classification

of the Weyl tensor in General Relativity.

Because the matrix ωab is real and antisymmetric, there are restrictions on its

eigenvalues. These constraints are contained in the following elementary Lemmas.

Lemma 1: If λ is an eigenvalue of ωab, then −λ is also an eigenvalue of ωab.

Proof: From

(ωab − ληab)l
b = 0 (A.7)

one infers the characteristic equation

det(ω − λη) = 0 (A.8)

But then 0 = det(ω−λη)T = det(−ω−λη) = det(ω +λη), i.e., −λ is also a root

of the characteristic equation.✷

Lemma 2: If λ is an eigenvalue, then λ* is also an eigenvalue.
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Proof: This is a consequence of the reality of ωab, which implies that the char-

acteristic equation (A.8) has real coefficients.✷

A.2.1 Types of eigenvalues

It follows from these theorems that the four eigenvalues of ω are of the following

four possible types:

1. λ, −λ, λ∗, −λ∗, λ = a + ib, a 6= 0 6= b

2. λ1 = λ∗
1, −λ1, λ2 = λ∗

2, −λ2, (λ1 and λ2 real)

3. λ1, −λ1 = λ∗
1, λ2, −λ2 = λ∗, (λ1 and λ2 imaginary)

4. λ1 = λ∗
1, −λ1, λ2, −λ2 = λ∗

2, (λ1 real, λ2 imaginary)

In each case, the eigenvalues involve only two independent real numbers, whose

knowledge is equivalent to knowing the two Casimir invariants.

I1 = ωabωab, I2 = 1
2
ǫabcdωabωcd (A.9)

[If one replaces SO(2, 2) by SO(4), iωa
b is hermitian and therefore diagonalizable.

Hence there is no nilpotent part and iωa
b is completely characterized by its eigen-

values and thus by I1 and I2.]

Multiple roots can occur only in the following circumstances:

• Cases (2) and (3), when λ1 = λ2 (or −λ2). If λ1 6= 0, then λ1 and −λ1 are

distinct roots. If λ1 = 0, then 0 is a quadruple root; or

• Cases (2),(3) or (4), when one of the roots vanishes.

A.2.2 Types of antisymmetric tensors

For simple roots, one can give a unique canonical form to which any matrix ωab

with a given set of eigenvalues can be brought to by an SO(2, 2) transformation.

This is the form of ωab in the basis where ωa
b is diagonal. In the presence of multiple

roots, there are inequivalent canonical forms because ωa
b may contain a non-trivial
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nilpotent part N . But for each possible type of N , there is a unique canonical form.

These canonical forms are all derived in the next subsections.

We shall say that the matrix ωab is of type k if its nilpotent part is of order

k, Nk = 0. The types I and II can be further classified according to the reality

properties of the roots. We thus define:

Type I (N = 0)

Ia: 4 complex roots λ, −λ, λ∗, −λ∗ (λ 6= ±λ∗).

Ib: 4 real roots λ1, −λ1, λ2,−λ2.

Ic: 4 imaginary roots λ1, −λ1, λ2, −λ2.

Id: 2 real (λ1 and −λ1), and two imaginary roots (λ2 and −λ2).

Type II (N 6= 0, N2 = 0)

IIa: 2 real double roots, λ and −λ.

IIb: 2 imaginary double roots, λ and −λ.

IIc: 1 double root (0) and 2 simple roots (λ and −λ, with λ real or imaginary.)

Type III (N2 6= 0, N3 = 0): one quadruple root, zero.

Type IV (N3 6= 0, N4 = 0): one quadruple root, zero.

We shall write in all cases

λ = a + ib (A.10)

We close this section by proving the following useful Lemma.

Lemma 3: Let va and ua be eigenvectors of ωa
b with respective eigenvalues λ

and µ,

ωa
bv

b = λva, ωa
bu

b = µua. (A.11)

Then vau
a = 0 unless λ + µ = 0. In particular, if λ 6= 0, then va is a null vector.

Proof: One has uaω
a

bv
b = λuav

a = −µuava, and thus (λ + µ)uava = 0. ✷

We now proceed to the explicit determination of the canonical forms.

A.3 Type Ia

One has by definition of type Ia,

ωabl
b = λla (A.12a)
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ωabm
b = −λmb (A.12b)

ωabl
∗b = λ∗l∗a (A.12c)

ωabm
∗b = −λ∗m∗

a (A.12d)

where the eigenvectors la, l∗a, ma, ma∗ are complex and linearly independent. The

only scalar products that can be different from zero are lama and la∗m∗
a. They cannot

vanish since the metric would then be degenerate. By scaling ma if necessary one

can assume lama = 1. One then has also la∗m∗
a = 1. The metric is given by

ηab = lamb + l∗am
∗
b + [a ↔ b] (A.13)

since

(ηab − lamb − l∗am
∗
b − [a ↔ b]) ub

is zero whenever ua equals la, ma, la∗, mb∗. The tensor ωab is given by

ωab = λ(lamb − lbma) + λ∗(l∗am
∗
b − l∗bm

∗
a) (A.14)

because this reproduces (A.12a)-(A.12d).

Our goal is to achieve a canonical expression for ωa
b over the real numbers.

Therefore we decompose the vectors la and ma into their real and imaginary com-

ponents

la = ua + iva, ma = na + iqa, (A.15)

(the transformation la, ma, l∗a, m∗
a → ua, va, na, qa is invertible and so, the vectors

ua, va, na, and qa form a basis). This gives

ηab = 2(uanb − vaqb) + [a ↔ b] (A.16)

ωab = 2a(uanb − vaqb) − 2b(uaqb + vanb) − [a ↔ b] (A.17)

In the orthonormal basis where the vectors ua, va, na, qa, have components ua =

(0, 1
2
, 1

2
, 0), na = (0,−1

2
, 1

2
, 0), va = (1

2
, 0, 0, 1

2
), and qa = (1

2
, 0, 0,−1

2
), ωab take the

form
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ωab =

















0 b 0 a

−b 0 a 0

0 −a 0 b

−a 0 −b 0

















(A.18)

Eq. (A.18) is the canonical form of an antisymmetric tensor of type Ia. The

Casimir invariants are found from (A.9) to be

I1 = 4(b2 − a2)) (A.19a)

I2 = 4(b2 + a2)) (A.19b)

A.4 Type Ib

One has, by definition of type Ib,

ωabl
b = λ1la, ωabm

b = −λ1ma (A.20a)

ωabn
b = λ2na, ωabu

b = −λ2ua (A.20b)

The vectors la, ma, na, and ua are real and linearly independent, and the non-

vanishing scalar products are l ·m and n · u. Straightforward steps yield then, in an

orthonormal basis, the canonical form

ωab =

















0 0 0 −λ2

0 0 −λ1 0

0 λ1 0 0

λ2 0 0 0

















(A.21)

The Casimir invariants are given by
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I1 = −2(λ2
1 + λ2

2), (A.22a)

I2 = 4λ1λ2. (A.22b)

A.5 Type Ic

One has, by definition of type Ic

ωabl
b = ib1la, ωabl

b∗ = −ib1l
∗
a (A.23a)

ωabm
b = ib1ma, ωabm

b∗ = −ib1m
∗
a (A.23b)

The only non-vanishing scalar products are lal
a∗ and mam

a∗. One can rescale la

and ma so that l · l∗ = ±1, m · m∗ = ∓1. If l · l∗ = 1, then m · m∗ = −1 and vice

versa. [Through la = 1√
2
(ua + iva), one associates to a vector la obeying lal

a∗ = 1,

two real vectors ua, va , such that uau
a = 1 = vav

a, uav
a = 0. So, if lal

a∗ = 1,

one must have mam
a∗ = −1 in order to agree with the signature (− − ++) of the

metric.]

One obtains the final canonical form

ωab =

















0 b1 0 0

−b1 0 0 0

0 0 0 b2

0 0 −b2 0

















(A.24)

for ωab in a real orthonormal basis.

The Casimir invariants are found to be

I1 = 2(b2
1 + b2

2), (A.25a)

I2 = 4b1b2. (A.25b)
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A.6 Type Id

Type Id does not exist. Indeed, the real eigenvalue brings a block of signature

(+−), while the imaginary eigenvalue brings a block of signature (++) or (−−).

This is inconsistent with signature (−− ++).

A.7 Role of the Casimir invariants for type I

If one compares (A.19a), (A.19b), (A.22a), (A.22b) and (A.25a), (A.25b), one

sees that the Casimir invariants completely characterize the matrices ωab of type

I. If I1±I2 are both positive, the type is type Ic. If I1±I2 are both negative, the

type is type Ib. Otherwise, the type is Ia. Furthermore, the eigenvalues can be

reconstructed from I1 and I2. The roots are degenerate when I1+I2 or I1−I2 vanish.

It is easy to see that I1±I2 are the Casimir invariants of the two algebras so(2, 1)

contained in so(2, 2, ) = so(2, 1) ⊕ so(2, 1). The self-dual and anti-self-dual (real)

matrices ω±
ab = ωab ± 1

2
ǫab

cdωcd define irreducible representations of so(2, 2) (ω+
ab

transforms as a vector under the first so(2, 1), while ω−
ab transforms as a vector

under the second.) One has 2I1 = ω+
abω

+ab and 2I2 = ω−
abω

−ab. There is however, no

particular advantage in working with the self-dual and anti-self-dual components of

ωab in the subsequent discussion. For that reason, we shall not perform the split.

A.8 Type IIa

By definition of type IIa, there are two doubly degenerate, non-zero, real eigen-

values λ and −λ. Each eigenvalue has at least one eigenvector, thus one can find la

and ma such that

ωabl
b = λla (A.26a)

ωabm
b = −λma (A.26b)

Within each invariant subspace we can introduce an additional vector to complete

l, m to a basis. Since ωa
b has a nilpotent part, at least one of the additional vectors

will not be an eigenvector. We can thus write, without loss of generality,
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ωabu
b = λua + la (A.27a)

ωabs
b = −λsa + αma (A.27b)

It follows from (A.26a), (A.26b) and (A.27a), (A.27b) that l ·l = l ·m = l ·u = 0.

Hence, since the metric is non-degenerate we must have l · s 6= 0. This implies in

turn that α must be different from zero since (A.27a), (A.27b) gives l ·s+αm ·u = 0.

By a rescaling of m we can set α = 1, so one has

ωabs
b = −λsa + ma (A.28)

The remaining scalar products are evaluated as follows. First, one can take

uasa = 0 since one can redefine ua → ua + ρla without changing any of the previous

relations. Second, by multiplying (A.27a) with ua, one gets, using uala = 0, that

uaua = 0. One then finds from (A.28) uama = −1 as the only remaining non-

vanishing scalar product.

The metric and antisymmetric tensor ωab read

ηab = lasb − maub + [a ↔ b] (A.29a)

ωab = λ(lasb − uamb) − lamb − [a ↔ b] (A.29b)

In a suitable orthonormal frame, this gives

ωab =

















0 1 1 λ

−1 0 λ 1

−1 −λ 0 1

−λ −1 −1 0

















(A.30)

When λ 6= 0, a simpler, equivalent canonical form, can be achieved by replacing

ma by m′
a + la/2λ and sa by s′a + ua/2λ. This leaves ηab unchanged

ηab = las
′
b − m′

aub + [a ↔ b], (A.31)
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but modifies ωab to

ωab = λ(las
′
b − uam

′
b) + la(ub − m′

b) − [a ↔ b], (A.32)

which, in an appropriate orthonormal frame, yields

ωab =

















0 0 0 λ

0 0 λ 1

0 −λ 0 1

−λ −1 −1 0

















(A.33)

The forms (A.30) and (A.33) are not equivalent when λ = 0. It is only (A.30) that

is if type IIa in that case, since (A.33) with λ = 0 possesses a non trivial nilpotent

part of order 3 and is thus of type III. The Casimir invariants are found to be

I1 = −4λ2, (A.34a)

I2 = 4λ2. (A.34b)

i.e., they are exactly the same as those of (A.22a), (A.22b) with λ1 = λ2. However,

the canonical forms (A.30) or (A.33) are not equivalent to (A.21) with λ1 = λ2 since

they possess a non trivial nilpotent part , while (A.21) does not for any value of λ1,

λ2.

A.9 Types IIb and IIc

The analysis of type IIb proceeds as for type IIa. We only quote the final

canonical form in an orthonormal basis

ωab =

















0 b − 1 −1 0

−b + 1 0 0 1

1 0 0 b + 1

0 −1 −b − 1 0

















(A.35)
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and the Casimir invariants

I1 = 4b2, I2 = 4b2. (A.36)

Type IIc is incompatible with a non-degenerate metric and so it does not exist.

Indeed, the equations ωabl
b = 0, ωabm

b = la (0 is a double root and ωa
b is a non

trivial nilpotent matrix in the corresponding invariant eigenspace), together with

ωabu
b = λua, ωabv

b = −λva imply l · l = l · ω · m = −(lω) · m = 0, l · m = ω · m = 0,

l · u = λ−1l · ω · u = 0, l · v = −λ−1l · v = 0. So la would be a non zero vector

orthogonal to any vector and the metric would be degenerate.

A.10 Types III and IV

In type III, zero is a quadruple root of the characteristic equation. Since ωa
b is

nilpotent of order 3, one can find a basis such that

ωabl
b = 0 (A.37a)

ωabm
b = 0, ωabu

b = ma, ωabt
b = ua. (A.37b)

The scalar product of la with ua vanishes from (A.37b). Similarly, m · m =

m · u = 0. Hence m · t cannot vanish, say m · t = ±1. Then, by a redefinition of

la, la → la + ρma, one can assume l · t = 0. It follows that l · l 6= 0 since otherwise

the metric would be degenerate. We set l · l = −ε, ε = ±1. By making appropriate

redefinitions of ta if necessary and using the fact that the metric is of signature

(−− ++), one finally obtains

ηab = ε(−lalb − matb − tbma + uaub) (A.38a)

ωab = ε(maub − uamb) (A.38b)

This yields in an appropriate orthonormal basis

Type III+ (ε = +1).
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ωab =

















0 0 0 0

0 0 0 1

0 0 0 1

0 −1 −1 0

















(A.39)

Type III− (ε = −1)

ωab =

















0 −1 −1 0

1 0 0 0

1 0 0 0

0 0 0 0

















(A.40)

The two Casimir invariants vanish for type III and yet the matrix ωab is not zero.

Type IV does not exist. Indeed for the case of nilpotency of order 4, one has

ωabl
b = 0, ωabm

b = la, ωabu
b = ma and ωabt

b = ua. By taking the scalar product of

the equation with la, one finds l · l = l · m = l · u = 0. So l · t 6= 0, say l · t = k.

But then u · m = m · ωt = −l · t 6= 0 (from the last relations), while the equations

ωabu
b = ma and the antisymmetry of ωabu

b imply u · m = 0. This contradiction

shows that type IV is inconsistent.
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A.11 Summary of Results

We summarize our results by giving for each type the canonical form of the

Killing vector (1/2)ωabJab and the corresponding Casimir invariants in a table.

Type Killing vector 1
4
I1

1
4
I2

Ia b(J01 + J23) − a(J03 + J12) b2 − a2 b2 + a2

Ib λ1J12 + λ2J03 −1
2
(λ2

1 + λ2
2) λ1λ2

Ic b1J01 + b2J23
1
2
(b2

1 + b2
2) b1b2

IIa λ(J03 + J12) + J01 − J02 − J13 + J23 −λ2 λ2

or

λ(−J03 + J12) − J13 + J23 (λ 6= 0) −λ2 −λ2

IIb (b − 1)J01 + (b − 1)J23 + J02 − J13 b2 b2

III+ −J13 + J23 0 0

III− −J01 + J02 0 0

Table 1. Classification of one-parameter subgroups of SO(2, 2)

Note that for the second canonical form of type IIa, valid when λ 6= 0, we have

replaced J03 by −J03 to comply with the form given in the text. This amounts to

replace λ2 by −λ2, and can be acheived by redefinining ξ0 as −ξ0. This is why the

second Casimir invariant, which is not parity-invariant, changes its sign.

The cases of interest for the black hole are Ib, IIa and III+, for which the

eingenvalues of ωab, namely ±r+/l and ±r−/l are all real. (These cases exist only

because the signature of the metric is (−− ++)). Type Ib (with λ1 6= λ2) describe

a general black hole with |J | < Ml, type IIa describes an extreme black hole with

non-zero mass, while type III+ describes the ground state with M = 0. The type

becomes more and more special [from four distinct real roots to one single real root

(zero)] as one goes from the general black hole to the ground state.

It is interesting to notice that if one expresses r+ and r− as functions of J and M

and goes beyond the extreme limit |J | = Ml, the roots r+ and r− become complex

conjugates. This strongly suggests that type Ia describes the spacetime whose metric

is obtained by setting |J | > Ml in the black hole line element. On the other hand,

if one keeps |J | < Ml and takes M < 0, the roots r+ and r− become two different

purely imaginary numbers. This strongly suggests that there is a close relationship

between type Ic and the negative mass solutions of [5].
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Finally, on an even more parenthetical note, we mention that for the Euclidean

black hole the group SO(2, 2) is replaced by SO(3, 1). In that case the eigenvalues

of ωa
b are of the form (a,−a, ib,−ib) with real a and b. This form may be obtained

from that of type Ib above by setting MEuc = M , JEuc = −iJ in the formula (2.22),

expressing the eigenvalues in terms of M and J . This is just the prescription for

the (real) Euclidean continuation of the Minkowskian signature black hole [see, for

example[1].

Appendix B. Smoothness of the Black Hole
Geometry

This Appendix addresses the question of whether the smoothness of anti-de Sitter

space subsists after the identifications leading to the black hole are made. That is,

we ask whether the quotient spaces we deal with are Hausdorff manifolds. The

conclusion is that this is so when J 6= 0, but when J = 0 the Hausdorff manifold

structure is destroyed at r = 0.

As discussed by Hawking and Ellis [9],the quotient spaces are Hausdorff manifolds

if and only if the action of the identification subgroup H = {exp2πkξ, kǫZ} is

properly discontinuous, namely, if the following properties hold,

(i) Each point Qǫ adS has a neighbourhood U such that (exp2πkξ)(U)∩U = φ for

all kǫZ, k 6= 0; and

(ii) If P, Q ǫ adS do not belong to the same orbit of H (i.e., there is no k ǫZ such

that (exp2πkξ)(P ) = Q), then there are neighborhoods B and B′ of P and Q

respectively such that (exp2πkξ)(B) ∩ B′ = φ for all k ǫZ.

To proceed with the analysis we introduce the Euclidean norm

[(u′ − u)2 + (v′ − v)2 + (x′ − x)2 + (y′ − y)2]1/2 (B.1)

on R4. The norm of the Killing vector

ξ =
r+

l

(

u
∂

∂x
+ x

∂

∂u

)

− r−
l

(

v
∂

∂y
+ y

∂

∂v

)

(B.2)
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is bounded from below by r− > 0,

‖ ξ · ξ ‖E =

[

r2
+

l2
(u2 + x2) +

r2
−
l2

(v2 + y2)

]

=

[

r2
+ − r2

−
l2

(u2 + x2) +
r2
−
l2

(u2 + x2 + v2 + y2)

]1/2

≥ r− > 0 (on u2 + v2 = x2 + y2 + l2) (B.3)

Let Q0 be a point of anti-de Sitter space with coordinates (u0, v0, x0, y0) satisfying

u2
0 + v2

0 − x2
0 − y2

0 = l2. Its successive images Qn are given by

un = (cosh α)u0 + (sinh α)x0 (B.4)

xn = (sinh α)u0 + (cosh α)x0 (B.5)

vn = (cosh β)v0 − (sinh β)y0 (B.6)

yn = −(sinh β)v0 + (cosh β)v0 (B.7)

(B.8)

with n ǫ Z, α = 2πr+/l, β = 2πr−/l. The Euclidean distance dE(Q0, Qn), (n 6= 0)

between Q0 and Qn is bounded from below by

dE(Q0, Qn) ≥ l
√

2(cosh β − 1) > 0, (n 6= 0). (B.9)

Indeed, one has

(un − u0)
2 + (xn − x0)

2 + (vn − v0)
2 + (yn − y0)

2 (B.10)

≥ |(un − u0)
2 − (xn − x0)

2| + |(vn − v0)
2 − (yn − y0)

2|
= 2(cosh nα − 1)|u2

0 − x2
0| + 2(cosh nβ − 1)|v2

0 − y2
0|

≥ 2(cosh β − 1)[|u2
0 − x2

0| + |v2
0 − y2

0|]
≥ 2(cosh β − 1)|u2

0 − x2
0 + v2

0 − y2
0|

= 2(cosh β − 1)l2 (B.11)

The bound (B.9) is uniform, i.e., it does not depend on Q0.

Let P0 be another point of anti-de Sitter space with coordinates (ū0, v̄0, x̄0, ȳ0).

It is easy to see, by using formulas analogous to (B.3) for P0, that the distance

dE(Pn, Q0) between Q0 and the images of P0 goes to infinity as n → ±∞. Hence,
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there is a minimum “distance of approach” of the orbit of P0 to Q0 (which may be

zero if Q0 = Pk for some k). That minimum distance of approach varies continuously

if one varies P0 continuously.

Let U be the open ball centered at Q0 with radius r < l
2

√

2(cosh β − 1). The

image of any point of this ball by exp2πkξ, (k 6= 0) cannot be in U . Otherwise the

bound (B.3) would be violated. This proves (i).

Now, turn to (ii). Let P0 be a point that is not mapped on Q0 by any power of

exp2πξ. In the open ball U , there can be at most one image of P0. If there were

none, by continuity, the points sufficiently close to P0 will have no image in U and

thus (ii) would hold. So let us assume that there is one image of P0 in U , say Pn.

Let B̃ be an open ball centered at Pn and entirely contained in U . All the images

of the points in B̃ lie outside U , i.e., (exp2πkξ)(B̃) ∩ U = φ. Let B” be an open

ball centered at Q0 such that B ∩ B̃ = φ. Then B = (exp− 2πnξ)(B̃) and B” fulfill

condition (ii).

[For simplicity we have used in this analysis the simpler form of the Killing vector

only appropriate for |J | < Ml. One can easily check that for |J | = Ml there are no

fixed points and that all the orbits go to infinity, just as for |J | < Ml. It then easily

follows that the results for |J | < Ml remain valid for |J | = Ml. The details are left

to the reader]

The above argument breaks down when there is no angular momentum because

the Killing vector ξ = r+

l
(u ∂

∂x
+ x ∂

∂u
) vanishes in that case along the line u = x = 0,

which is thus a line of fixed points. This makes the bound (B.3) empty. Furthermore,

each fixed point is an accumulation point for the orbits of the points obeying u±x = 0

and having the same values of v and y. Hence, both (i) and (ii) are violated if

one takes for Q one of the fixed points. The action of the group is not properly

discontinuous. This leads to a singularity in the manifold structure of the Taub-

NUT type.

[This kind of singularity has been discussed in [14]. Another example of it has

been found in [15]. For an analysis see [9], where a discussion of identifications

under boosts in two-dimensional Minkowski space is given. To make contact with

that analysis observe that near r = 0 one can neglect the cosmological constant.

The SO(2, 2) group goes then over to the Poincaré group in three dimensions. The

identification Killing vector (3.17) becomes then a boost plus a translation in a
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transverse direction. It is the presence, in our case, of this additional transverse

direction which is responsible for the smooth behavior when J 6= 0: the combination

of a boost and a transverse translation does not have fixed points.]
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FIGURE CAPTIONS

Figure 1. Poincaré Patches

(a) Section with surface y = 0. The solid lines have u + x = 0, y = 0. These

curves are lightlike and asymptotic to λ = (k +1/2)π. The pattern is periodic

in λ.

(b) Section with surface x = 0. The solid lines (including the axis λ = 0) have

u + x = 0, x = 0 in anti-de Sitter space. The pattern is again periodic in λ.

As one lets the angle θ approach ±π/2, the lines u + x = 0 become more and

more horizontal until they reach the configuration shown.

Figure 2. Regions determined by the norm of ξ′.

(a) Section with surface y = 0 when r− 6= 0. The solid lines are the curves

ξ′ · ξ′ = 0, y = 0. They are timelike. The dotted lines are the lines ξ′ · ξ′ = r2
−

(u2 − x2 = 0), bounding regions II and III. The lines formed by dots and

segments have ξ′ · ξ′ = r2
+, y = 0.

(b) Section with surface x = 0 when r− 6= 0. The surface x = 0 has ξ′ · ξ′ > 0

everywhere when r− 6= 0. The horizontal solid lines are the lines ξ′ · ξ′ = r2
−,

x = 0. The lightlike lines formed by dots and segments have ξ′ · ξ′ = r2
+. The

region ξ′ · ξ′ > 0, x = 0 splits into disconnected components separated by the

horizontal lines and containing two regions I and two regions II.

(c) Section with surface y = 0 where r− = 0. The solid lines have ξ′ ·ξ′ = 0, y = 0.

The lines formed by dots and segments have ξ′ · ξ′ = r2
+. The region ξ′ · ξ′ > 0

splits into disconnected components separated by the horizontal lines with

each component consisting of two regions II (and two regions I, not seen in

this figure since they have no intersection with y = 0). Regions III have

disappeared. Note that the Killing vector ξ′ is now tangent to the lightlike

curves u2 − x2 = 0, y = 0.

Figure 3. Spacetime diagrams for J = 0

(a) Kruskal diagram, (b) Penrose diagram.
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Figure 4 . Penrose diagrams for J 6= 0. (a) Patch K−, (b) Patch K+, (c) Complete

diagram obtained by joining an infinite sequence of patches K−, K+ on the

overlap K

Figure 5. Penrose Diagrams for the extreme cases (a) M = 0 = J , (b) M = |J/l| 6= 0.

Figure 6. Penrose diagrams for the maximally extended non-extremal spinning black

hole (Ml > |J | > 0), showing also the regions beyond the singularity where

the Killing vector ξ is timelike. Regions III’ are defined by −∞ < ξ · ξ < r2
−

and contain regions III (0 < ξ · ξ < r2
−). The metric in these regions is

isomorphic to the metric in regions I but with the roles of t and φ exchanged.

The singularity r = 0 in III corresponds then to the stationary surface in

I. There are closed timelike curves through each point in regions III’. These

closed timelike curves cross ξ · ξ = 0.

Figure 7. Penrose diagram for a collapsing body in the case J = 0.
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