:sparkles: add dataset loading script
Browse files- wikitext_fr.py +168 -0
wikitext_fr.py
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The HuggingFace Datasets Authors and Antoine SIMOULIN.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Wikitext-fr language modeling dataset consists of over 70 million tokens
|
16 |
+
extracted from the set of french Wikipedia articles that are classified as
|
17 |
+
"quality articles" or "good articles.". The aim is to replicate the English
|
18 |
+
benchmark."""
|
19 |
+
|
20 |
+
|
21 |
+
import csv
|
22 |
+
import json
|
23 |
+
import os
|
24 |
+
|
25 |
+
import datasets
|
26 |
+
|
27 |
+
|
28 |
+
# TODO: Add BibTeX citation
|
29 |
+
# Find for instance the citation on arxiv or on the dataset repo/website
|
30 |
+
_CITATION = """\
|
31 |
+
@inproceedings{simoulin:hal-03265900,
|
32 |
+
TITLE = {{Un mod{\`e}le Transformer G{\'e}n{\'e}ratif Pr{\'e}-entrain{\'e} pour le \_\_\_\_\_\_ fran{\c c}ais}},
|
33 |
+
AUTHOR = {Simoulin, Antoine and Crabb{\'e}, Benoit},
|
34 |
+
URL = {https://hal.archives-ouvertes.fr/hal-03265900},
|
35 |
+
BOOKTITLE = {{Traitement Automatique des Langues Naturelles}},
|
36 |
+
ADDRESS = {Lille, France},
|
37 |
+
EDITOR = {Denis, Pascal and Grabar, Natalia and Fraisse, Amel and Cardon, R{\'e}mi and Jacquemin, Bernard and Kergosien, Eric and Balvet, Antonio},
|
38 |
+
PUBLISHER = {{ATALA}},
|
39 |
+
PAGES = {246-255},
|
40 |
+
YEAR = {2021},
|
41 |
+
KEYWORDS = {fran{\c c}ais. ; GPT ; G{\'e}n{\'e}ratif ; Transformer ; Pr{\'e}-entra{\^i}n{\'e}},
|
42 |
+
PDF = {https://hal.archives-ouvertes.fr/hal-03265900/file/7.pdf},
|
43 |
+
HAL_ID = {hal-03265900},
|
44 |
+
HAL_VERSION = {v1},
|
45 |
+
}
|
46 |
+
"""
|
47 |
+
|
48 |
+
# TODO: Add description of the dataset here
|
49 |
+
# You can copy an official description
|
50 |
+
_DESCRIPTION = """\
|
51 |
+
Wikitext-fr language modeling dataset consists of over 70 million tokens
|
52 |
+
extracted from the set of french Wikipedia articles that are classified as
|
53 |
+
"quality articles" or "good articles.". The aim is to replicate the English
|
54 |
+
benchmark."""
|
55 |
+
|
56 |
+
# TODO: Add a link to an official homepage for the dataset here
|
57 |
+
_HOMEPAGE = "https://github.com/AntoineSimoulin/gpt-fr"
|
58 |
+
|
59 |
+
# TODO: Add the licence for the dataset here if you can find it
|
60 |
+
_LICENSE = "Creative Commons Attribution-ShareAlike License."
|
61 |
+
|
62 |
+
# TODO: Add link to the official dataset URLs here
|
63 |
+
# The HuggingFace dataset library don't host the datasets but only point to the original files
|
64 |
+
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
65 |
+
# _URLs = {
|
66 |
+
# 'wikitext-35': "./wikitext_35/",
|
67 |
+
# 'wikitext-72': "./wikitext_72/",
|
68 |
+
# }
|
69 |
+
_URLs = {
|
70 |
+
'wikitext-35': "./wikitext_35/wiki.zip",
|
71 |
+
'wikitext-72': "./wikitext_72/wiki.zip",
|
72 |
+
}
|
73 |
+
|
74 |
+
|
75 |
+
# TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
|
76 |
+
class NewDataset(datasets.GeneratorBasedBuilder):
|
77 |
+
"""Wikitext-fr language modeling dataset consists of over 70 million tokens
|
78 |
+
extracted from the set of french Wikipedia articles that are classified as
|
79 |
+
"quality articles" or "good articles.". The aim is to replicate the English benchmark.
|
80 |
+
"""
|
81 |
+
|
82 |
+
VERSION = datasets.Version("1.1.0")
|
83 |
+
|
84 |
+
# This is an example of a dataset with multiple configurations.
|
85 |
+
# If you don't want/need to define several sub-sets in your dataset,
|
86 |
+
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
|
87 |
+
|
88 |
+
# If you need to make complex sub-parts in the datasets with configurable options
|
89 |
+
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
|
90 |
+
# BUILDER_CONFIG_CLASS = MyBuilderConfig
|
91 |
+
|
92 |
+
# You will be able to load one or the other configurations in the following list with
|
93 |
+
# data = datasets.load_dataset('my_dataset', 'first_domain')
|
94 |
+
# data = datasets.load_dataset('my_dataset', 'second_domain')
|
95 |
+
BUILDER_CONFIGS = [
|
96 |
+
datasets.BuilderConfig(name="wikitext-35", version=VERSION, description="This part covers quality articles only"),
|
97 |
+
datasets.BuilderConfig(name="wikitext-72", version=VERSION, description="This part covers quality articles and good articles"),
|
98 |
+
]
|
99 |
+
|
100 |
+
DEFAULT_CONFIG_NAME = "wikitext-35" # It's not mandatory to have a default configuration. Just use one if it make sense.
|
101 |
+
|
102 |
+
def _info(self):
|
103 |
+
features = datasets.Features({"paragraph": datasets.Value("string")})
|
104 |
+
return datasets.DatasetInfo(
|
105 |
+
# This is the description that will appear on the datasets page.
|
106 |
+
description=_DESCRIPTION,
|
107 |
+
# This defines the different columns of the dataset and their types
|
108 |
+
features=features, # Here we define them above because they are different between the two configurations
|
109 |
+
# If there's a common (input, target) tuple from the features,
|
110 |
+
# specify them here. They'll be used if as_supervised=True in
|
111 |
+
# builder.as_dataset.
|
112 |
+
supervised_keys=None,
|
113 |
+
# Homepage of the dataset for documentation
|
114 |
+
homepage=_HOMEPAGE,
|
115 |
+
# License for the dataset if available
|
116 |
+
license=_LICENSE,
|
117 |
+
# Citation for the dataset
|
118 |
+
citation=_CITATION,
|
119 |
+
)
|
120 |
+
|
121 |
+
def _split_generators(self, dl_manager):
|
122 |
+
"""Returns SplitGenerators."""
|
123 |
+
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
|
124 |
+
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
|
125 |
+
|
126 |
+
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLs
|
127 |
+
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
|
128 |
+
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
|
129 |
+
my_urls = _URLs[self.config.name]
|
130 |
+
data_dir = dl_manager.download_and_extract(my_urls)
|
131 |
+
return [
|
132 |
+
datasets.SplitGenerator(
|
133 |
+
name=datasets.Split.TRAIN,
|
134 |
+
# These kwargs will be passed to _generate_examples
|
135 |
+
gen_kwargs={
|
136 |
+
"filepath": os.path.join(data_dir, "wiki.train.tokens"),
|
137 |
+
"split": "train",
|
138 |
+
},
|
139 |
+
),
|
140 |
+
datasets.SplitGenerator(
|
141 |
+
name=datasets.Split.TEST,
|
142 |
+
# These kwargs will be passed to _generate_examples
|
143 |
+
gen_kwargs={
|
144 |
+
"filepath": os.path.join(data_dir, "wiki.test.tokens"),
|
145 |
+
"split": "test"
|
146 |
+
},
|
147 |
+
),
|
148 |
+
datasets.SplitGenerator(
|
149 |
+
name=datasets.Split.VALIDATION,
|
150 |
+
# These kwargs will be passed to _generate_examples
|
151 |
+
gen_kwargs={
|
152 |
+
"filepath": os.path.join(data_dir, "wiki.valid.tokens"),
|
153 |
+
"split": "dev",
|
154 |
+
},
|
155 |
+
),
|
156 |
+
]
|
157 |
+
|
158 |
+
def _generate_examples(
|
159 |
+
self, filepath, split # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
160 |
+
):
|
161 |
+
""" Yields examples as (key, example) tuples. """
|
162 |
+
# This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
|
163 |
+
# The `key` is here for legacy reason (tfds) and is not important in itself.
|
164 |
+
|
165 |
+
with open(filepath, 'r') as f:
|
166 |
+
data = f.readlines()
|
167 |
+
for id_, paragraph in enumerate(data):
|
168 |
+
yield id_, {"paragraph": paragraph, }
|