File size: 4,256 Bytes
db82bcc 3469834 3939d7f 3469834 3939d7f 3469834 3939d7f 3469834 178d5c9 07471a6 178d5c9 2f847f1 b7340d2 2f847f1 9cdc052 2f847f1 9cdc052 2f847f1 9cdc052 2f847f1 9cdc052 2f847f1 3d1d34b b7340d2 4190c66 b7340d2 143d19a 4defa34 143d19a 4defa34 143d19a 178d5c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
---
license: cc-by-sa-4.0
language:
- en
tags:
- MIDI
- Monster
- Piano
- Representations
pretty_name: monsterpiano
size_categories:
- 100K<n<1M
dataset_info:
features:
- name: midi_hash
dtype: string
- name: midi_score
sequence: int64
- name: midi_signature
sequence:
sequence: int64
splits:
- name: train
num_bytes: 30593499836
num_examples: 580204
download_size: 4082220299
dataset_size: 30593499836
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
# Monster Piano
## 580204 solo Piano MIDI scores representations from [Monster MIDI dataset](https://huggingface.co/datasets/projectlosangeles/Monster-MIDI-Dataset)
![Monster-Piano-Logo.jpg](https://cdn-uploads.huggingface.co/production/uploads/5f57ea2d3f32f12a3c0692e6/b0Skg7NBSHipbTIFVXvc4.jpeg)
***
## Installation and use
***
### Load dataset
```python
#===================================================================
from datasets import load_dataset
#===================================================================
monster_piano = load_dataset('asigalov61/Monster-Piano')
dataset_split = 'train'
dataset_entry_index = 0
dataset_entry = monster_piano[dataset_split][dataset_entry_index]
midi_hash = dataset_entry['midi_hash']
midi_score = dataset_entry['midi_score']
midi_signature = dataset_entry['midi_signature']
print(midi_hash)
print(midi_score[:15])
print(midi_signature[:4])
```
***
### Decode score to MIDI
```python
#===================================================================
# !git clone --depth 1 https://github.com/asigalov61/tegridy-tools
#===================================================================
import TMIDIX
#===================================================================
def decode_to_ms_MIDI_score(midi_score):
score = []
time = 0
for m in midi_score:
if 0 <= m < 128:
time += m * 32
elif 128 < m < 256:
dur = (m-128) * 32
elif 256 < m < 384:
pitch = (m-256)
elif 384 < m < 512:
vel = (m-384)
score.append(['note', time, dur, 0, pitch, vel, 0])
return score
#===================================================================
ms_MIDI_score = decode_to_ms_MIDI_score(midi_score)
#===================================================================
detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(ms_MIDI_score,
output_signature = midi_hash,
output_file_name = midi_hash,
track_name='Project Los Angeles'
)
```
***
### Calculate MIDI score signature
```python
#===================================================================
# !git clone --depth 1 https://github.com/asigalov61/tegridy-tools
#===================================================================
from collections import Counter
import TMIDIX
#===================================================================
def get_score_signature(midi_score):
score = []
time = 0
pt = 0
for m in midi_score:
if 0 <= m < 128:
time = m
elif 256 < m < 384:
pitch = (m-256)
if time == pt:
score.append([0, pitch])
else:
score.append([time, pitch])
pt = time
chords = []
cho = []
for s in score:
if s[0] == 0:
cho.append(s[1])
else:
if cho:
chords.append(cho)
cho = [s[1]]
pitches_chords = []
for c in chords:
if len(c) > 1:
tones_chord = sorted(set([p % 12 for p in c]))
while tones_chord not in TMIDIX.ALL_CHORDS_SORTED:
tones_chord = tones_chord[:-1]
pitches_chords.append(TMIDIX.ALL_CHORDS_SORTED.index(tones_chord)+128)
else:
pitches_chords.append(c[0])
return list(Counter(pitches_chords).most_common())
```
***
### Project Los Angeles
### Tegridy Code 2024 |