--- dataset_info: features: - name: id dtype: string - name: label dtype: class_label: names: '0': social '1': transport '2': calendar '3': play '4': news '5': datetime '6': recommendation '7': email '8': iot '9': general '10': audio '11': lists '12': qa '13': cooking '14': takeaway '15': music '16': alarm '17': weather - name: label_text dtype: string - name: text dtype: string - name: idx dtype: int64 - name: query_idx dtype: int64 - name: positive_idx dtype: int64 - name: negative_idx dtype: int64 splits: - name: train num_bytes: 1119338 num_examples: 11514 download_size: 644764 dataset_size: 1119338 configs: - config_name: default data_files: - split: train path: data/train-* --- # MTEB Amazon Massive Scenario Triplets Dataset This dataset was used in the paper GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning. Refer to https://arxiv.org/abs/2402.16829 for details. The code for generating the data is available at https://github.com/avsolatorio/GISTEmbed/blob/main/scripts/create_classification_dataset.py. ## Citation ``` @article{solatorio2024gistembed, title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning}, author={Aivin V. Solatorio}, journal={arXiv preprint arXiv:2402.16829}, year={2024}, URL={https://arxiv.org/abs/2402.16829} eprint={2402.16829}, archivePrefix={arXiv}, primaryClass={cs.LG} } ```