Datasets:
File size: 7,498 Bytes
218b904 079e019 218b904 cc42a6e fa8027b 079e019 4148ef6 0f79e40 0bcf5a2 26265a2 94fe2c1 79e55cf bb03135 d4c988c b4f15e7 ae6fc67 218b904 cc42a6e fa8027b 079e019 4148ef6 0f79e40 0bcf5a2 26265a2 94fe2c1 79e55cf bb03135 d4c988c b4f15e7 ae6fc67 02b949b 218b904 02b949b 03e31c0 02b949b 03e31c0 02b949b d44a842 02b949b d44a842 02b949b 03e31c0 02b949b 03e31c0 02b949b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
---
dataset_info:
- config_name: all_languages_highlevel
features:
- name: text
dtype: string
- name: label
dtype: string
- name: lang
dtype: string
- name: id
dtype: string
splits:
- name: train
num_bytes: 710259
num_examples: 6430
- name: validation
num_bytes: 179231
num_examples: 1608
- name: test
num_bytes: 222985
num_examples: 2010
download_size: 601522
dataset_size: 1112475
- config_name: all_languages_lowlevel
features:
- name: text
dtype: string
- name: labels
sequence: string
- name: lang
dtype: string
- name: id
dtype: string
splits:
- name: train
num_bytes: 826954
num_examples: 6430
- name: validation
num_bytes: 207973
num_examples: 1608
- name: test
num_bytes: 260637
num_examples: 2010
download_size: 614714
dataset_size: 1295564
- config_name: high_resources_highlevel
features:
- name: text
dtype: string
- name: label
dtype: string
- name: lang
dtype: string
- name: id
dtype: string
splits:
- name: train
num_bytes: 569544
num_examples: 5353
- name: validation
num_bytes: 142698
num_examples: 1339
download_size: 359821
dataset_size: 712242
- config_name: high_resources_lowlevel
features:
- name: text
dtype: string
- name: labels
sequence: string
- name: lang
dtype: string
- name: id
dtype: string
splits:
- name: train
num_bytes: 668111
num_examples: 5353
- name: validation
num_bytes: 166962
num_examples: 1339
download_size: 368829
dataset_size: 835073
- config_name: only_english_highlevel
features:
- name: text
dtype: string
- name: label
dtype: string
- name: lang
dtype: string
- name: id
dtype: string
splits:
- name: train
num_bytes: 162298
num_examples: 1747
- name: validation
num_bytes: 40922
num_examples: 437
download_size: 88620
dataset_size: 203220
- config_name: only_english_lowlevel
features:
- name: text
dtype: string
- name: labels
sequence: string
- name: lang
dtype: string
- name: id
dtype: string
splits:
- name: train
num_bytes: 191533
num_examples: 1747
- name: validation
num_bytes: 48286
num_examples: 437
download_size: 91808
dataset_size: 239819
configs:
- config_name: all_languages_highlevel
data_files:
- split: train
path: all_languages_highlevel/train-*
- split: validation
path: all_languages_highlevel/validation-*
- split: test
path: all_languages_highlevel/test-*
- config_name: all_languages_lowlevel
data_files:
- split: train
path: all_languages_lowlevel/train-*
- split: validation
path: all_languages_lowlevel/validation-*
- split: test
path: all_languages_lowlevel/test-*
- config_name: high_resources_highlevel
data_files:
- split: train
path: high_resources_highlevel/train-*
- split: validation
path: high_resources_highlevel/validation-*
- config_name: high_resources_lowlevel
data_files:
- split: train
path: high_resources_lowlevel/train-*
- split: validation
path: high_resources_lowlevel/validation-*
- config_name: only_english_highlevel
data_files:
- split: train
path: only_english_highlevel/train-*
- split: validation
path: only_english_highlevel/validation-*
- config_name: only_english_lowlevel
data_files:
- split: train
path: only_english_lowlevel/train-*
- split: validation
path: only_english_lowlevel/validation-*
task_categories:
- text-classification
language:
- en
- es
- pl
- hu
- el
- da
- tr
- ja
- sv
- fi
- 'no'
- ru
- it
- he
- is
tags:
- finance
size_categories:
- 1K<n<10K
---
# MultiFin
<!-- Provide a quick summary of the dataset. -->
MultiFin – a publicly available financial dataset consisting of real-world article headlines covering 15 languages across different writing systems and language families.
The dataset consists of hierarchical label structure providing two classification tasks: multi-label and multi-class.
## Dataset Description
The MULTIFIN dataset is a multilingual corpus, consisting of real-world article headlines covering 15
languages. The corpus is annotated using hierarchical label structure, providing two classification tasks:
multi-class and multi-label classification.
- **Curated by:** Rasmus Jørgensen, Oliver Brandt, Mareike Hartmann, Xiang Dai, Christian Igel, and Desmond Elliott.
- **Language(s) (NLP):** English, Spanish, Polish, Hungarian, Greek, Danish, Turkish, Japanese, Swedish, Finnish, Norwegian, Russian, Italian, Hebrew, Icelandic.
- **License:** [More Information Needed]
## Dataset Sources
<!-- Provide the basic links for the dataset. -->
- **Repository:** https://github.com/RasmusKaer/MultiFin
- **Paper:** https://aclanthology.org/2023.findings-eacl.66/
## Dataset Structure
<!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
The dataset consists of 10,048 headlines in 15 languages annotated with 23 topic labels for LOW-LEVEL and 6 HIGH-LEVEL topics for multi-class.
The dataset has been further stratified into two subsets:
1. **only_english**: that contains only English training data.
2. **high_resources:** a subset that contains 5 high-resource languages (i.e., English, Turkish, Danish, Spanish, Poland).
## Citation
<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
```
@inproceedings{jorgensen-etal-2023-multifin,
title = "{M}ulti{F}in: A Dataset for Multilingual Financial {NLP}",
author = "J{\o}rgensen, Rasmus and
Brandt, Oliver and
Hartmann, Mareike and
Dai, Xiang and
Igel, Christian and
Elliott, Desmond",
editor = "Vlachos, Andreas and
Augenstein, Isabelle",
booktitle = "Findings of the Association for Computational Linguistics: EACL 2023",
month = may,
year = "2023",
address = "Dubrovnik, Croatia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.findings-eacl.66",
doi = "10.18653/v1/2023.findings-eacl.66",
pages = "894--909",
abstract = "Financial information is generated and distributed across the world, resulting in a vast amount of domain-specific multilingual data. Multilingual models adapted to the financial domain would ease deployment when an organization needs to work with multiple languages on a regular basis. For the development and evaluation of such models, there is a need for multilingual financial language processing datasets. We describe MultiFin {--} a publicly available financial dataset consisting of real-world article headlines covering 15 languages across different writing systems and language families. The dataset consists of hierarchical label structure providing two classification tasks: multi-label and multi-class. We develop our annotation schema based on a real-world application and annotate our dataset using both {`}label by native-speaker{'} and {`}translate-then-label{'} approaches. The evaluation of several popular multilingual models, e.g., mBERT, XLM-R, and mT5, show that although decent accuracy can be achieved in high-resource languages, there is substantial room for improvement in low-resource languages.",
}
```
|