File size: 7,498 Bytes
218b904
 
079e019
218b904
 
 
 
 
 
 
 
 
 
 
 
 
cc42a6e
 
 
fa8027b
 
 
 
 
079e019
 
 
 
 
 
 
 
 
 
 
 
 
 
4148ef6
 
 
0f79e40
 
 
 
 
0bcf5a2
 
 
 
 
 
 
 
 
 
 
 
 
 
26265a2
 
 
 
 
94fe2c1
 
 
 
 
 
 
 
 
 
 
 
 
 
79e55cf
 
 
 
 
bb03135
 
 
 
 
 
 
 
 
 
 
 
 
 
d4c988c
 
 
 
 
b4f15e7
 
 
 
 
 
 
 
 
 
 
 
 
 
ae6fc67
 
 
 
 
218b904
 
 
 
 
cc42a6e
 
fa8027b
 
079e019
 
 
 
4148ef6
 
0f79e40
 
0bcf5a2
 
 
 
26265a2
 
94fe2c1
 
 
 
79e55cf
 
bb03135
 
 
 
d4c988c
 
b4f15e7
 
 
 
ae6fc67
 
02b949b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
218b904
02b949b
 
 
 
 
 
 
 
03e31c0
02b949b
 
 
 
 
 
 
 
 
 
03e31c0
02b949b
 
 
 
 
 
 
 
 
 
 
d44a842
02b949b
d44a842
 
 
02b949b
 
 
 
 
 
 
 
03e31c0
02b949b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
03e31c0
02b949b
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
---
dataset_info:
- config_name: all_languages_highlevel
  features:
  - name: text
    dtype: string
  - name: label
    dtype: string
  - name: lang
    dtype: string
  - name: id
    dtype: string
  splits:
  - name: train
    num_bytes: 710259
    num_examples: 6430
  - name: validation
    num_bytes: 179231
    num_examples: 1608
  - name: test
    num_bytes: 222985
    num_examples: 2010
  download_size: 601522
  dataset_size: 1112475
- config_name: all_languages_lowlevel
  features:
  - name: text
    dtype: string
  - name: labels
    sequence: string
  - name: lang
    dtype: string
  - name: id
    dtype: string
  splits:
  - name: train
    num_bytes: 826954
    num_examples: 6430
  - name: validation
    num_bytes: 207973
    num_examples: 1608
  - name: test
    num_bytes: 260637
    num_examples: 2010
  download_size: 614714
  dataset_size: 1295564
- config_name: high_resources_highlevel
  features:
  - name: text
    dtype: string
  - name: label
    dtype: string
  - name: lang
    dtype: string
  - name: id
    dtype: string
  splits:
  - name: train
    num_bytes: 569544
    num_examples: 5353
  - name: validation
    num_bytes: 142698
    num_examples: 1339
  download_size: 359821
  dataset_size: 712242
- config_name: high_resources_lowlevel
  features:
  - name: text
    dtype: string
  - name: labels
    sequence: string
  - name: lang
    dtype: string
  - name: id
    dtype: string
  splits:
  - name: train
    num_bytes: 668111
    num_examples: 5353
  - name: validation
    num_bytes: 166962
    num_examples: 1339
  download_size: 368829
  dataset_size: 835073
- config_name: only_english_highlevel
  features:
  - name: text
    dtype: string
  - name: label
    dtype: string
  - name: lang
    dtype: string
  - name: id
    dtype: string
  splits:
  - name: train
    num_bytes: 162298
    num_examples: 1747
  - name: validation
    num_bytes: 40922
    num_examples: 437
  download_size: 88620
  dataset_size: 203220
- config_name: only_english_lowlevel
  features:
  - name: text
    dtype: string
  - name: labels
    sequence: string
  - name: lang
    dtype: string
  - name: id
    dtype: string
  splits:
  - name: train
    num_bytes: 191533
    num_examples: 1747
  - name: validation
    num_bytes: 48286
    num_examples: 437
  download_size: 91808
  dataset_size: 239819
configs:
- config_name: all_languages_highlevel
  data_files:
  - split: train
    path: all_languages_highlevel/train-*
  - split: validation
    path: all_languages_highlevel/validation-*
  - split: test
    path: all_languages_highlevel/test-*
- config_name: all_languages_lowlevel
  data_files:
  - split: train
    path: all_languages_lowlevel/train-*
  - split: validation
    path: all_languages_lowlevel/validation-*
  - split: test
    path: all_languages_lowlevel/test-*
- config_name: high_resources_highlevel
  data_files:
  - split: train
    path: high_resources_highlevel/train-*
  - split: validation
    path: high_resources_highlevel/validation-*
- config_name: high_resources_lowlevel
  data_files:
  - split: train
    path: high_resources_lowlevel/train-*
  - split: validation
    path: high_resources_lowlevel/validation-*
- config_name: only_english_highlevel
  data_files:
  - split: train
    path: only_english_highlevel/train-*
  - split: validation
    path: only_english_highlevel/validation-*
- config_name: only_english_lowlevel
  data_files:
  - split: train
    path: only_english_lowlevel/train-*
  - split: validation
    path: only_english_lowlevel/validation-*
task_categories:
- text-classification
language:
- en
- es
- pl
- hu
- el
- da
- tr
- ja
- sv
- fi
- 'no'
- ru
- it
- he
- is
tags:
- finance
size_categories:
- 1K<n<10K
---

# MultiFin

<!-- Provide a quick summary of the dataset. -->

MultiFin – a publicly available financial dataset consisting of real-world article headlines covering 15 languages across different writing systems and language families.
The dataset consists of hierarchical label structure providing two classification tasks: multi-label and multi-class.

## Dataset Description

The MULTIFIN dataset is a multilingual corpus, consisting of real-world article headlines covering 15
languages. The corpus is annotated using hierarchical label structure, providing two classification tasks:
multi-class and multi-label classification.


- **Curated by:** Rasmus Jørgensen, Oliver Brandt, Mareike Hartmann, Xiang Dai, Christian Igel, and Desmond Elliott.
- **Language(s) (NLP):** English, Spanish, Polish, Hungarian, Greek, Danish, Turkish, Japanese, Swedish, Finnish, Norwegian, Russian, Italian, Hebrew, Icelandic.
- **License:** [More Information Needed]

## Dataset Sources

<!-- Provide the basic links for the dataset. -->

- **Repository:** https://github.com/RasmusKaer/MultiFin
- **Paper:** https://aclanthology.org/2023.findings-eacl.66/


## Dataset Structure

<!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->

The dataset consists of 10,048 headlines in 15 languages annotated with 23 topic labels for LOW-LEVEL and 6 HIGH-LEVEL topics for multi-class.

The dataset has been further stratified into two subsets:
1. **only_english**: that contains only English training data.
2. **high_resources:** a subset that contains 5 high-resource languages (i.e., English, Turkish, Danish, Spanish, Poland).


## Citation

<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->

**BibTeX:**

```
@inproceedings{jorgensen-etal-2023-multifin,
    title = "{M}ulti{F}in: A Dataset for Multilingual Financial {NLP}",
    author = "J{\o}rgensen, Rasmus  and
      Brandt, Oliver  and
      Hartmann, Mareike  and
      Dai, Xiang  and
      Igel, Christian  and
      Elliott, Desmond",
    editor = "Vlachos, Andreas  and
      Augenstein, Isabelle",
    booktitle = "Findings of the Association for Computational Linguistics: EACL 2023",
    month = may,
    year = "2023",
    address = "Dubrovnik, Croatia",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2023.findings-eacl.66",
    doi = "10.18653/v1/2023.findings-eacl.66",
    pages = "894--909",
    abstract = "Financial information is generated and distributed across the world, resulting in a vast amount of domain-specific multilingual data. Multilingual models adapted to the financial domain would ease deployment when an organization needs to work with multiple languages on a regular basis. For the development and evaluation of such models, there is a need for multilingual financial language processing datasets. We describe MultiFin {--} a publicly available financial dataset consisting of real-world article headlines covering 15 languages across different writing systems and language families. The dataset consists of hierarchical label structure providing two classification tasks: multi-label and multi-class. We develop our annotation schema based on a real-world application and annotate our dataset using both {`}label by native-speaker{'} and {`}translate-then-label{'} approaches. The evaluation of several popular multilingual models, e.g., mBERT, XLM-R, and mT5, show that although decent accuracy can be achieved in high-resource languages, there is substantial room for improvement in low-resource languages.",
}
```