Create pmc_oa.py
Browse files
pmc_oa.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""PMC-OA Dataset"""
|
2 |
+
|
3 |
+
import os
|
4 |
+
import jsonlines
|
5 |
+
|
6 |
+
import datasets
|
7 |
+
|
8 |
+
|
9 |
+
logger = datasets.logging.get_logger(__name__)
|
10 |
+
|
11 |
+
|
12 |
+
_CITATION = """\
|
13 |
+
@article{lin2023pmc,
|
14 |
+
title={PMC-CLIP: Contrastive Language-Image Pre-training using Biomedical Documents},
|
15 |
+
author={Lin, Weixiong and Zhao, Ziheng and Zhang, Xiaoman and Wu, Chaoyi and Zhang, Ya and Wang, Yanfeng and Xie, Weidi},
|
16 |
+
journal={arXiv preprint arXiv:2303.07240},
|
17 |
+
year={2023}
|
18 |
+
}
|
19 |
+
"""
|
20 |
+
|
21 |
+
_DESCRIPTION = """\
|
22 |
+
Foundation models trained on large-scale dataset gain a recent surge in CV and NLP. In contrast, development in biomedical domain lags far behind due to data scarcity.
|
23 |
+
To address this issue, we build and release PMC-OA, a biomedical dataset with 1.6M image-caption pairs collected from PubMedCentral's OpenAccess subset, which is 8 times larger than before.
|
24 |
+
PMC-OA covers diverse modalities or diseases, with majority of the image-caption samples aligned at finer-grained level, i.e., subfigure and subcaption.
|
25 |
+
While pretraining a CLIP-style model on PMC-OA, our model named PMC-CLIP achieves state-of-the-art results on various downstream tasks,
|
26 |
+
including image-text retrieval on ROCO, MedMNIST image classification, Medical VQA, i.e. +8.1% R@10 on image-text retrieval, +3.9% accuracy on image classification.
|
27 |
+
"""
|
28 |
+
|
29 |
+
_HOMEPAGE = "https://weixionglin.github.io/PMC-CLIP/"
|
30 |
+
|
31 |
+
_URL = "https://huggingface.co/datasets/axiong/pmc_oa/resolve/main/"
|
32 |
+
_URLS = {
|
33 |
+
"images": _URL + "images.zip",
|
34 |
+
# "train": _URL + "train.jsonl",
|
35 |
+
"valid": _URL + "valid.jsonl",
|
36 |
+
"test": _URL + "test.jsonl"
|
37 |
+
}
|
38 |
+
|
39 |
+
|
40 |
+
class PMC_OA(datasets.GeneratorBasedBuilder):
|
41 |
+
"""PMC_OA Dataset."""
|
42 |
+
|
43 |
+
def _info(self):
|
44 |
+
return datasets.DatasetInfo(
|
45 |
+
description=_DESCRIPTION,
|
46 |
+
features=datasets.Features(
|
47 |
+
{
|
48 |
+
# "image_name": datasets.Value("string"),
|
49 |
+
"image": datasets.Image(),
|
50 |
+
"caption": datasets.Value("string"),
|
51 |
+
}
|
52 |
+
),
|
53 |
+
supervised_keys=None,
|
54 |
+
homepage=_HOMEPAGE,
|
55 |
+
citation=_CITATION,
|
56 |
+
)
|
57 |
+
|
58 |
+
def _split_generators(self, dl_manager):
|
59 |
+
data_dir = dl_manager.download_and_extract(_URLS)
|
60 |
+
|
61 |
+
return [
|
62 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": os.path.join(data_dir, "train.jsonl")}),
|
63 |
+
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": os.path.join(data_dir, "valid.jsonl")}),
|
64 |
+
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": os.path.join(data_dir, "test.jsonl")}),
|
65 |
+
]
|
66 |
+
|
67 |
+
def _generate_examples(self, filepath):
|
68 |
+
"""This function returns the examples in the raw (text) form."""
|
69 |
+
logger.info("generating examples from = %s", filepath)
|
70 |
+
|
71 |
+
with jsonlines.open(filepath) as reader:
|
72 |
+
_id = 0
|
73 |
+
for obj in reader:
|
74 |
+
relative_image_path = obj['image']
|
75 |
+
image_path = os.path.join("images", relative_image_path)
|
76 |
+
caption = obj['caption']
|
77 |
+
yield _id, {
|
78 |
+
"image": {
|
79 |
+
"path": image_path,
|
80 |
+
"bytes": open(image_path, "rb").read(),
|
81 |
+
},
|
82 |
+
"caption": caption,
|
83 |
+
}
|
84 |
+
_id += 1
|
85 |
+
|