"""PMC-OA Dataset""" import os import jsonlines import datasets logger = datasets.logging.get_logger(__name__) _CITATION = """\ @article{lin2023pmc, title={PMC-CLIP: Contrastive Language-Image Pre-training using Biomedical Documents}, author={Lin, Weixiong and Zhao, Ziheng and Zhang, Xiaoman and Wu, Chaoyi and Zhang, Ya and Wang, Yanfeng and Xie, Weidi}, journal={arXiv preprint arXiv:2303.07240}, year={2023} } """ _DESCRIPTION = """\ Foundation models trained on large-scale dataset gain a recent surge in CV and NLP. In contrast, development in biomedical domain lags far behind due to data scarcity. To address this issue, we build and release PMC-OA, a biomedical dataset with 1.6M image-caption pairs collected from PubMedCentral's OpenAccess subset, which is 8 times larger than before. PMC-OA covers diverse modalities or diseases, with majority of the image-caption samples aligned at finer-grained level, i.e., subfigure and subcaption. While pretraining a CLIP-style model on PMC-OA, our model named PMC-CLIP achieves state-of-the-art results on various downstream tasks, including image-text retrieval on ROCO, MedMNIST image classification, Medical VQA, i.e. +8.1% R@10 on image-text retrieval, +3.9% accuracy on image classification. """ _HOMEPAGE = "https://weixionglin.github.io/PMC-CLIP/" _URL = "https://huggingface.co/datasets/axiong/pmc_oa/resolve/main/" _URLS = { "images": _URL + "images.zip", "train": _URL + "train.jsonl", "valid": _URL + "valid.jsonl", "test": _URL + "test.jsonl" } class PMC_OA(datasets.GeneratorBasedBuilder): """PMC_OA Dataset.""" def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "image": datasets.Image(), "caption": datasets.Value("string"), } ), supervised_keys=None, homepage=_HOMEPAGE, citation=_CITATION, ) def _split_generators(self, dl_manager): data_dir = dl_manager.download_and_extract(_URLS) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_dir['train'], "image_dir": data_dir['images']}), datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": data_dir['valid'], "image_dir": data_dir['images']}), datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": data_dir['test'], "image_dir": data_dir['images']}), ] def _generate_examples(self, filepath, image_dir): """This function returns the examples in the raw (text) form.""" logger.info("generating examples from = %s", filepath) with jsonlines.open(filepath) as reader: _id = 0 for obj in reader: relative_image_path = obj['image'] image_path = os.path.join(image_dir, "caption_T060_filtered_top4_sep_v0_subfigures", relative_image_path) caption = obj['caption'] yield _id, { "image": { "path": image_path, "bytes": open(image_path, "rb").read(), }, "caption": caption, } _id += 1