babelbox_voice / babelbox_voice.py
bjelkenhed's picture
clean up
1b7340f
raw
history blame
5.18 kB
""" Babelbox Voice Dataset"""
import os
import csv
import codecs
import datasets
from typing import List
from pathlib import Path
from tqdm import tqdm
logger = datasets.logging.get_logger(__name__)
_CITATION = """\
@inproceedings{babelboxvoice:2022,
author = {Andersson, O. and Bjelkenhed, M. and Bielsa, M. et al},
title = {Babelbox Voice: A Speech Corpus for training Whisper},
year = 2022
}
"""
_HF_REPO_PATH = "https://huggingface.co/datasets/babelbox/babelbox_voice/"
class BabelboxVoiceConfig(datasets.BuilderConfig):
"""BuilderConfig for BabelboxVoice."""
def __init__(self, name, version, **kwargs):
self.name = name
self.version = version
self.features = kwargs.pop("features", None)
self.description = kwargs.pop("description", None)
self.data_url = kwargs.pop("data_url", None)
self.nb_data_shards = kwargs.pop("nb_data_shards", None)
self.metadata_url = kwargs.pop("metadata_url", None)
description = (
f"Babelbox Voice speech to text dataset."
)
super(BabelboxVoiceConfig, self).__init__(
name=name,
version=version,
**kwargs,
)
class BabelboxVoice(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [
BabelboxVoiceConfig(
name="nst",
version=VERSION,
description="This part of Babel Voice includes data from National Library of Norway",
features=["path", "audio", "sentence"],
data_url= _HF_REPO_PATH + "resolve/main/data/nst/nst-data-{:0>3d}.tar.gz",
nb_data_shards = 42,
metadata_url= _HF_REPO_PATH + "resolve/main/data/nst/metadata.tar.gz"
)
]
DEFAULT_CONFIG_NAME = "nst"
def _info(self):
description = (
"Babelbox Voice is an initiative to help teach machines how real people speak. "
)
if self.config.name == "nst":
features = datasets.Features(
{
"path": datasets.Value("string"),
"audio": datasets.features.Audio(sampling_rate=16_000),
"sentence": datasets.Value("string")
}
)
else:
features = datasets.Features(
{
"path": datasets.Value("string"),
"audio": datasets.features.Audio(sampling_rate=16_000),
"sentence": datasets.Value("string")
}
)
return datasets.DatasetInfo(
description=description,
features=features,
supervised_keys=None,
version=self.config.version
)
def get_metadata(self, dl_manager, metadata_url):
if metadata_url == None: return None
metadata_path = dl_manager.download(metadata_url)
local_extracted_metadata_path = dl_manager.extract(metadata_path) if not dl_manager.is_streaming else None
metadata_archive = dl_manager.iter_archive(metadata_path)
metadata = {}
for path, file in metadata_archive:
reader = csv.DictReader(codecs.iterdecode(file, 'utf-8'))
for row in tqdm(reader, desc="Reading metadata..."):
filename = row['filename_channel_1']
sentence = row['text']
metadata[filename] = sentence
return metadata
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
download_urls = [self.config.data_url.format(i) for i in range(1, self.config.nb_data_shards + 1) ]
archive_paths = dl_manager.download(download_urls)
local_extracted_archive_paths = dl_manager.extract(archive_paths) if not dl_manager.is_streaming else {}
metadata = self.get_metadata(dl_manager, self.config.metadata_url)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN,
gen_kwargs={
"local_extracted_archive_paths": local_extracted_archive_paths,
"archives": [dl_manager.iter_archive(path) for path in archive_paths],
"metadata": metadata
})
]
def _generate_examples(self, local_extracted_archive_paths, archives, metadata):
sampling_rate = 16000
for i, audio_archive in enumerate(archives):
for path, file in audio_archive:
if local_extracted_archive_paths == False:
path = os.path.join(local_extracted_archive_paths[i], path)
result = dict()
result["path"] = path
result["audio"] = {"path": path, "bytes": file.read()}
result["sentence"] = metadata[path]
yield path, result