babelbox_voice / babelbox_voice.py
bjelkenhed's picture
silence timestamps
b452ae2
raw
history blame
8.74 kB
""" Babelbox Voice Dataset"""
import os
import csv
import codecs
import datasets
from typing import List
from pathlib import Path
from tqdm import tqdm
import torchaudio
from io import BytesIO
import pydub
from pydub import AudioSegment
from pydub.silence import detect_leading_silence
import numpy as np
logger = datasets.logging.get_logger(__name__)
_CITATION = """\
@inproceedings{babelboxvoice:2022,
author = {Andersson, O. and Bjelkenhed, M. and Bielsa, M. et al},
title = {Babelbox Voice: A Speech Corpus for training Whisper},
year = 2022
}
"""
_HF_REPO_PATH = "https://huggingface.co/datasets/babelbox/babelbox_voice/"
class BabelboxVoiceConfig(datasets.BuilderConfig):
"""BuilderConfig for BabelboxVoice."""
def __init__(self, name, version, **kwargs):
self.name = name
self.version = version
self.features = kwargs.pop("features", None)
self.description = kwargs.pop("description", None)
self.data_url = kwargs.pop("data_url", None)
self.nb_data_shards = kwargs.pop("nb_data_shards", None)
self.metadata_url = kwargs.pop("metadata_url", None)
description = (
f"Babelbox Voice speech to text dataset."
)
super(BabelboxVoiceConfig, self).__init__(
name=name,
version=version,
**kwargs,
)
class BabelboxVoice(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [
BabelboxVoiceConfig(
name="nst",
version=VERSION,
description="This part of Babel Voice includes data from National Library of Norway",
features=["path", "audio", "sentence"],
data_url= _HF_REPO_PATH + "resolve/main/data/nst/nst-data-{:0>3d}.tar.gz",
nb_data_shards = 42,
metadata_url= _HF_REPO_PATH + "resolve/main/data/nst/metadata.tar.gz"
)
]
DEFAULT_CONFIG_NAME = "nst"
def _info(self):
description = (
"Babelbox Voice is an initiative to help teach machines how real people speak. "
)
if self.config.name == "nst":
features = datasets.Features(
{
"path": datasets.Value("string"),
"audio": datasets.features.Audio(sampling_rate=16_000),
"text": datasets.Value("binary"),
"speaker_id": datasets.Value("string"),
"sex": datasets.Value("string"),
"accent": datasets.Value("string"),
}
)
else:
features = datasets.Features(
{
"path": datasets.Value("string"),
"audio": datasets.features.Audio(sampling_rate=16_000),
"text": datasets.Value("binary"),
"speaker_id": datasets.Value("string"),
"sex": datasets.Value("string"),
"accent": datasets.Value("string"),
}
)
return datasets.DatasetInfo(
description=description,
features=features,
supervised_keys=None,
version=self.config.version
)
def get_metadata(self, dl_manager, metadata_url):
if metadata_url == None: return None
metadata_path = dl_manager.download(metadata_url)
local_extracted_metadata_path = dl_manager.extract(metadata_path) if not dl_manager.is_streaming else None
def clean_sentence(sentence):
return (sentence
.replace("\\Komma", "",)
.replace("\\Punkt", "")
.replace("\\Utropstecken", "")
.replace("\\Frågetecken", ""))
metadata_archive = dl_manager.iter_archive(metadata_path)
metadata = {}
for path, file in metadata_archive:
reader = csv.DictReader(codecs.iterdecode(file, 'utf-8'))
for row in tqdm(reader, desc="Reading metadata..."):
filename = row['filename_channel_1']
metadata_item = {
'sentence': clean_sentence(row['text']),
'speaker_id': row['Speaker_ID'],
'sex': row['Sex'],
'accent': row['Region_of_Youth']
}
metadata[filename] = metadata_item
return metadata
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
download_urls = [self.config.data_url.format(i) for i in range(1, self.config.nb_data_shards + 1) ]
archive_paths = dl_manager.download(download_urls)
local_extracted_archive_paths = dl_manager.extract(archive_paths) if not dl_manager.is_streaming else {}
metadata = self.get_metadata(dl_manager, self.config.metadata_url)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN,
gen_kwargs={
"local_extracted_archive_paths": local_extracted_archive_paths,
"archives": [dl_manager.iter_archive(path) for path in archive_paths],
"metadata": metadata
})
]
def _generate_examples(self, local_extracted_archive_paths, archives, metadata):
sampling_rate = 16000
def get_audiosegment(array):
byte_array = np.int16(array * 2 ** 15).tobytes()
audio_segment = pydub.AudioSegment(byte_array, frame_rate=16000, sample_width=2, channels=1)
return audio_segment
def get_leading_and_trailing_silence(audio_array):
audio_segment = get_audiosegment(audio_array)
leading = detect_leading_silence(audio_segment)
trailing = detect_leading_silence(audio_segment.reverse())
return leading, trailing
def get_timestamp(audio_array):
leading_silence, trailing_silence = get_leading_and_trailing_silence(audio_array)
start_len = leading_silence / 1000
start_time = round(start_len / 2, 2) * 2
end_len = (len(audio_array) / sampling_rate) - (trailing_silence / 1000)
end_time = round(end_len / 2, 2) * 2
return (start_time, end_time)
def filter_sentence(sentence):
if "... tyst under denna inspelning ..." in sentence: return False
return True
def get_audio(file):
file_buf = BytesIO(file.read())
array, audio_sr = torchaudio.load(file_buf, format="wav")
return array[0], audio_sr
for i, audio_archive in enumerate(archives):
for path, file in audio_archive:
if local_extracted_archive_paths == False:
path = os.path.join(local_extracted_archive_paths[i], path)
metadata_item = metadata[path]
audio_array, audio_sr = get_audio(file)
if filter_sentence(metadata_item['sentence']) == False: continue
audio_len = len(audio_array) / sampling_rate
audio_len = round(audio_len / 2, 2) * 2
print(get_leading_and_trailing_silence(audio_array))
text = {
"text": metadata_item['sentence'],
"offsets": [
{"text": metadata_item['sentence'], "timestamp": get_timestamp(audio_array) }
]
}
result = {
'path' : path,
'audio': {"path": path, "array": audio_array, "sampling_rate": sampling_rate},
'text' : text,
'speaker_id' : metadata_item['speaker_id'],
'sex' : metadata_item['sex'],
'accent' : metadata_item['accent']
}
yield path, result