elcc / util /croissant.py
bboldt's picture
Update README.md
036fdbb
import json
from pathlib import Path
from textwrap import dedent
import datetime
import functools
import types
import typing
import pydantic
import mlcroissant as mlc # type: ignore
from . import validate
_distribution: list[mlc.FileObject | mlc.FileSet] = [
mlc.FileObject(
id="repo",
name="repo",
content_url="https://huggingface.co/datasets/bboldt/elcc/",
encoding_format="git+https",
sha256="main",
),
mlc.FileSet(
id="system-metadata-files",
name="system-metadata-files",
contained_in=["repo"],
includes=["systems/*/system.json"],
encoding_format="application/json",
),
mlc.FileSet(
id="system-metadata-files-raw",
name="system-metadata-files-raw",
contained_in=["repo"],
includes=["systems/*/system.json"],
encoding_format="text/plain",
),
mlc.FileSet(
id="corpus-metadata-files",
name="corpus-metadata-files",
contained_in=["repo"],
includes=["systems/*/data/*/metadata.json"],
encoding_format="application/json",
),
mlc.FileSet(
id="corpus-metadata-files-raw",
name="corpus-metadata-files-raw",
contained_in=["repo"],
includes=["systems/*/data/*/metadata.json"],
encoding_format="text/plain",
),
]
_metadata = mlc.Metadata(
name="ELCC",
description="ELCC is a collection of emergent language corpora with accompanying metadata and analyses.",
license=["https://creativecommons.org/licenses/by/4.0/"],
url="https://huggingface.co/datasets/bboldt/elcc/",
date_published=datetime.datetime.now(datetime.UTC),
cite_as=dedent(
"""\
@misc{boldt2024elcc,
title = "{ELCC}: the Emergent Language Corpus Collection",
author = "Brendon Boldt and David Mortensen",
year = 2024,
url = "https://huggingface.co/datasets/bboldt/elcc",
}"""
),
version="0.1.0",
keywords=["emergent communication", "emergent language", "corpus"],
distribution=_distribution,
record_sets=[],
)
def insert_corpora(metadata: mlc.Metadata) -> None:
paths = sorted(list(Path("systems").glob("*/data/*/corpus.json")))
for path in paths:
comps = str(path).split("/")
name = f"{comps[-4]}/{comps[-2]}"
metadata.distribution.append(
mlc.FileObject(
id=str(path),
name=str(path),
content_url=str(path),
encoding_format="application/json",
contained_in=["repo"],
)
)
metadata.record_sets.append(
mlc.RecordSet(
id=name,
name=name,
fields=[
mlc.Field(
id=f"{name}/line",
name="line",
data_types=mlc.DataType.INTEGER,
repeated=True,
source=mlc.Source(
file_object=str(path),
extract=mlc.Extract(json_path="$[*]"),
),
),
],
)
)
def make_system_field(base_name: str, typ: type | None) -> mlc.Field:
name = f"system-metadata/{base_name}"
jp = f"$.{base_name}"
type_map = [
(int, mlc.DataType.INTEGER),
(float, mlc.DataType.FLOAT),
(str, mlc.DataType.TEXT),
(bool, mlc.DataType.BOOL),
]
mlc_typ = None
for x, y in type_map:
if isinstance(typ, types.UnionType):
not_none = [x for x in typ.__args__ if not x == type(None)]
if len(typ.__args__) > 2 or len(not_none) != 1:
raise ValueError(f"Cannot handle {typ}")
typ = not_none[0]
elif isinstance(typ, typing._LiteralGenericAlias):
typ = type(typ.__args__[0])
elif base_name == "system.data_source":
typ = str
if issubclass(typ, x):
mlc_typ = y
break
if mlc_typ is None:
mlc_typ = mlc.DataType.TEXT
return mlc.Field(
id=name,
name=base_name,
data_types=[mlc_typ],
source=mlc.Source(
file_set="system-metadata-files",
extract=mlc.Extract(json_path=jp),
),
)
def insert_system_md(metadata: mlc.Metadata) -> None:
metadata.record_sets.append(
mlc.RecordSet(
id="system-metadata-raw",
name="system-metadata-raw",
fields=[
mlc.Field(
id="system-metadata-raw/path",
name="path",
data_types=[mlc.DataType.TEXT],
source=mlc.Source(
file_set="system-metadata-files-raw",
extract=mlc.Extract(file_property=mlc.FileProperty.fullpath),
),
# References always seem to cause conflicting read method errors.
# references={"field": {"@id": "system-metadata/path"}},
),
mlc.Field(
id="system-metadata-raw/raw",
name="raw",
data_types=[mlc.DataType.TEXT],
source=mlc.Source(
file_set="system-metadata-files-raw",
extract=mlc.Extract(file_property=mlc.FileProperty.content),
),
),
],
)
)
fields = [
mlc.Field(
id="system-metadata/path",
name="path",
data_types=[mlc.DataType.TEXT],
source=mlc.Source(
file_set="system-metadata-files",
extract=mlc.Extract(file_property=mlc.FileProperty.fullpath),
),
),
]
for k0, v0 in validate.SystemMetadata.model_fields.items():
assert v0.annotation is not None
if isinstance(v0.annotation, type) and issubclass(
v0.annotation, pydantic.BaseModel
):
# Only doing one level of nesting for now.
for k1, v1 in v0.annotation.model_fields.items():
if k1 == "variants":
continue
fields.append(make_system_field(f"{k0}.{k1}", v1.annotation))
else:
if k0 == "notes":
continue
fields.append(make_system_field(k0, v0.annotation))
metadata.record_sets.append(
mlc.RecordSet(
id="system-metadata",
name="system-metadata",
fields=fields,
)
)
def insert_corpus_md(metadata: mlc.Metadata) -> None:
metadata.record_sets.append(
mlc.RecordSet(
id="corpus-metadata-raw",
name="corpus-metadata-raw",
fields=[
mlc.Field(
id="corpus-metadata-raw/path",
name="path",
data_types=[mlc.DataType.TEXT],
source=mlc.Source(
file_set="corpus-metadata-files-raw",
extract=mlc.Extract(file_property=mlc.FileProperty.fullpath),
),
# References always seem to cause conflicting read method errors.
# references={"field": {"@id": "corpus-metadata/path"}},
),
mlc.Field(
id="corpus-metadata-raw/raw",
name="raw",
data_types=[mlc.DataType.TEXT],
source=mlc.Source(
file_set="corpus-metadata-files-raw",
extract=mlc.Extract(file_property=mlc.FileProperty.content),
),
),
],
)
)
exemplar_path = "systems/nav-to-center/data/temperature_10/metadata.json"
with open(exemplar_path) as fo:
exemplar_data = json.load(fo)
fields = [
mlc.Field(
id="corpus-metadata/path",
name="path",
data_types=[mlc.DataType.TEXT],
source=mlc.Source(
file_set="corpus-metadata-files",
extract=mlc.Extract(file_property=mlc.FileProperty.fullpath),
# transforms=[mlc.Transform(regex=r"(....)")],
),
# References always seem to cause conflicting read method errors.
# references={"field": {"@id": "corpus-metadata/path"}},
),
]
items = exemplar_data["metrics"]["analysis"].items()
for k, v in items:
name = f"metrics.analysis.{k}".replace(" ", "_").lower()
if isinstance(v, int):
typ = mlc.DataType.INTEGER
elif isinstance(v, bool):
typ = mlc.DataType.BOOL
else:
typ = mlc.DataType.FLOAT
jp = f'$.metrics.analysis["{k}"]'
fields.append(
mlc.Field(
id=f"corpus-metadata/{name}",
name=name,
data_types=[typ],
source=mlc.Source(
file_set="corpus-metadata-files",
# extract=mlc.Extract(file_property=mlc.FileProperty.fullpath),
extract=mlc.Extract(json_path=jp),
),
)
)
metadata.record_sets.append(
mlc.RecordSet(
id="corpus-metadata",
name="corpus-metadata",
fields=fields,
)
)
@functools.cache
def get_metadata() -> mlc.Metadata:
insert_system_md(_metadata)
insert_corpus_md(_metadata)
insert_corpora(_metadata)
return _metadata
def save_metadata() -> None:
metadata = get_metadata()
print(_metadata.issues.report())
with open("croissant.json", "w") as fo:
d = metadata.to_json()
d["datePublished"] = str(d["datePublished"])
json.dump(d, fo, indent=2)
def test() -> None:
dataset = mlc.Dataset(jsonld="croissant.json")
# records = dataset.records(record_set="babyai-sr/GoToObj")
# records = dataset.records(record_set="system-metadata")
# records = dataset.records(record_set="system-metadata-raw")
# records = dataset.records(record_set="corpus-metadata")
records = dataset.records(record_set="corpus-metadata-raw")
for i, x in enumerate(records):
print(i, x)
if i > 10:
break
pass
if __name__ == "__main__":
save_metadata()
# test()