File size: 14,278 Bytes
f40b165 1179adf f40b165 55fb778 f40b165 55fb778 f40b165 55fb778 f40b165 55fb778 f40b165 55fb778 f40b165 55fb778 f40b165 112ec03 f40b165 5dd05dc 112ec03 f40b165 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 |
import csv
import os
import urllib
import datasets
from datasets.utils.py_utils import size_str
import datasets
import requests
from datasets.utils.py_utils import size_str
from huggingface_hub import HfApi, HfFolder
# from .languages import LANGUAGES
#Used to get tar.gz file from mozilla website
from .release_stats import STATS
#Hard Links
_HOMEPAGE = "https://commonvoice.mozilla.org/en/datasets"
_LICENSE = "https://creativecommons.org/publicdomain/zero/1.0/"
_API_URL = "https://commonvoice.mozilla.org/api/v1"
class CommonVoiceConfig(datasets.BuilderConfig):
"""BuilderConfig for CommonVoice."""
def __init__(self, name, version, **kwargs):
self.language = "bn" # kwargs.pop("language", None)
self.release_date = "2022-04-27" # kwargs.pop("release_date", None)
self.num_clips = 231120 # kwargs.pop("num_clips", None)
self.num_speakers = 19863 # kwargs.pop("num_speakers", None)
self.validated_hr = 56.61 # kwargs.pop("validated_hr", None)
self.total_hr = 399.47 # kwargs.pop("total_hr", None)
self.size_bytes = 8262390506 # kwargs.pop("size_bytes", None)
self.size_human = size_str(self.size_bytes)
description = (
f"Common Voice speech to text dataset in {self.language} released on {self.release_date}. "
f"The dataset comprises {self.validated_hr} hours of validated transcribed speech data "
f"out of {self.total_hr} hours in total from {self.num_speakers} speakers. "
f"The dataset contains {self.num_clips} audio clips and has a size of {self.size_human}."
)
super(CommonVoiceConfig, self).__init__(
name=name,
version=datasets.Version(version),
description=description,
**kwargs,
)
class CommonVoice(datasets.GeneratorBasedBuilder):
#DEFAULT_CONFIG_NAME = "en"
DEFAULT_CONFIG_NAME = "bn"
DEFAULT_WRITER_BATCH_SIZE = 1000
BUILDER_CONFIGS = [
CommonVoiceConfig(
name="bn"#lang,
version= '9.0.0' #STATS["version"],
language= "Bengali" #LANGUAGES[lang],
release_date= "2022-04-27" #STATS["date"],
num_clips= 231120 #lang_stats["clips"],
num_speakers= 19863 #lang_stats["users"],
validated_hr= float(56.61) #float(lang_stats["validHrs"]),
total_hr= float(399.47) #float(lang_stats["totalHrs"]),
size_bytes= int(8262390506) #int(lang_stats["size"]),
)
#for lang, lang_stats in STATS["locales"].items()
]
def _info(self):
# total_languages = len(STATS["locales"])
# total_valid_hours = STATS["totalValidHrs"]
total_languages = 1 #len(STATS["locales"])
total_valid_hours = float(399.47) #STATS["totalValidHrs"]
description = (
"Common Voice Bangla is bengali AI's initiative to help teach machines how real people speak in Bangla. "
f"The dataset is for initial training of a general speech recognition model for Bangla."
)
features = datasets.Features(
{
"client_id": datasets.Value("string"),
"path": datasets.Value("string"),
"audio": datasets.features.Audio(sampling_rate=48_000),
"sentence": datasets.Value("string"),
"up_votes": datasets.Value("int64"),
"down_votes": datasets.Value("int64"),
"age": datasets.Value("string"),
"gender": datasets.Value("string"),
"accent": datasets.Value("string"),
"locale": 'bn',
"segment": datasets.Value("string"),
}
)
return datasets.DatasetInfo(
description=description,
features=features,
supervised_keys=None,
# homepage=_HOMEPAGE,
license=_LICENSE,
# citation=_CITATION,
version=self.config.version,
#task_templates=[
# AutomaticSpeechRecognition(audio_file_path_column="path", transcription_column="sentence")
#],
)
def _get_bundle_url(self, locale, url_template):
# path = encodeURIComponent(path)
# path = url_template.replace("{locale}", locale)
path = url_template
path = urllib.parse.quote(path.encode("utf-8"), safe="~()*!.'")
# use_cdn = self.config.size_bytes < 20 * 1024 * 1024 * 1024
# response = requests.get(f"{_API_URL}/bucket/dataset/{path}/{use_cdn}", timeout=10.0).json()
response = requests.get(
f"{_API_URL}/bucket/dataset/{path}", timeout=10.0
).json()
return response["url"]
def _log_download(self, locale, bundle_version, auth_token):
if isinstance(auth_token, bool):
auth_token = HfFolder().get_token()
whoami = HfApi().whoami(auth_token)
email = whoami["email"] if "email" in whoami else ""
payload = {"email": email, "locale": locale, "dataset": bundle_version}
requests.post(f"{_API_URL}/{locale}/downloaders", json=payload).json()
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
hf_auth_token = dl_manager.download_config.use_auth_token
if hf_auth_token is None:
raise ConnectionError(
"Please set use_auth_token=True or use_auth_token='<TOKEN>' to download this dataset"
)
bundle_url_template = STATS["bundleURLTemplate"]
bundle_version = bundle_url_template.split("/")[0]
dl_manager.download_config.ignore_url_params = True
self._log_download(self.config.name, bundle_version, hf_auth_token)
archive_path = dl_manager.download(
self._get_bundle_url(self.config.name, bundle_url_template)
)
local_extracted_archive = (
dl_manager.extract(archive_path) if not dl_manager.is_streaming else None
)
if self.config.version < datasets.Version("5.0.0"):
path_to_data = ""
else:
path_to_data = "/".join([bundle_version, self.config.name])
path_to_clips = "/".join([path_to_data, "clips"]) if path_to_data else "clips"
#we provide our custom csvs with the huggingface repo so,
path_to_tsvs = "/" + "bengali_ai_tsv" + "/"
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"local_extracted_archive": local_extracted_archive,
"archive_iterator": dl_manager.iter_archive(archive_path),
#"metadata_filepath": "/".join([path_to_data, "train.tsv"])
# if path_to_data
# else "train.tsv",
#custom train.tsv
"metadata_filepath": "/".join([path_to_tsvs, "train.tsv"]) if path_to_tsvs else "train.tsv",
"path_to_clips": path_to_clips,
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"local_extracted_archive": local_extracted_archive,
"archive_iterator": dl_manager.iter_archive(archive_path),
"metadata_filepath": "/".join([path_to_data, "test.tsv"]) if path_to_data else "test.tsv",
"path_to_clips": path_to_clips,
"mode":"test",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"local_extracted_archive": local_extracted_archive,
"archive_iterator": dl_manager.iter_archive(archive_path),
"metadata_filepath": "/".join([path_to_data, "dev.tsv"]) if path_to_data else "dev.tsv",
"path_to_clips": path_to_clips,
"mode":"dev",
},
),
# datasets.SplitGenerator(
# name=datasets.Split.TEST,
# gen_kwargs={
# "local_extracted_archive": local_extracted_archive,
# "archive_iterator": dl_manager.iter_archive(archive_path),
# #"metadata_filepath": "/".join([path_to_data, "test.tsv"])
# # if path_to_data
# # else "test.tsv",
# #custom test.tsv
# "metadata_filepath": "/".join([path_to_tsvs, "test.tsv"]),
# "path_to_clips": path_to_clips,
# },
# ),
# datasets.SplitGenerator(
# name=datasets.Split.VALIDATION,
# gen_kwargs={
# "local_extracted_archive": local_extracted_archive,
# "archive_iterator": dl_manager.iter_archive(archive_path),
# # "metadata_filepath": "/".join([path_to_data, "dev.tsv"])
# # if path_to_data
# # else "dev.tsv",
# #custom test.tsv
# "metadata_filepath": "/".join([path_to_tsvs, "dev.tsv"]),
# "path_to_clips": path_to_clips,
# },
# ),
]
def _generate_examples(
self,
local_extracted_archive,
archive_iterator,
metadata_filepath,
path_to_clips,
):
"""Yields examples."""
data_fields = list(self._info().features.keys())
metadata = {}
metadata_found = True
with open(metadata_filepath, "rb") as file_obj:
lines = (line.decode("utf-8") for line in file_obj)
#lines = (line.decode("utf-8") for line in f)
reader = csv.DictReader(lines, delimiter="\t", quoting=csv.QUOTE_NONE)
for row in reader:
# set absolute path for mp3 audio file
if not row["path"].endswith(".mp3"):
row["path"] += ".mp3"
row["path"] = os.path.join(path_to_clips, row["path"])
# accent -> accents in CV 8.0
if "accents" in row:
row["accent"] = row["accents"]
del row["accents"]
# if data is incomplete, fill with empty values
for field in data_fields:
if field not in row:
row[field] = ""
metadata[row["path"]] = row
for path, f in archive_iterator:
if path.startswith(path_to_clips):
assert metadata_found, "Found audio clips before the metadata TSV file."
if not metadata:
break
if path in metadata:
result = metadata[path]
# set the audio feature and the path to the extracted file
path = (
os.path.join(local_extracted_archive, path)
if local_extracted_archive
else path
)
result["audio"] = {"path": path, "bytes": f.read()}
# set path to None if the audio file doesn't exist locally (i.e. in streaming mode)
result["path"] = path if local_extracted_archive else None
yield path, result
# def _generate_examples(
# self,
# local_extracted_archive,
# archive_iterator,
# metadata_filepath,
# path_to_clips,
# ):
# """Yields examples."""
# data_fields = list(self._info().features.keys())
# metadata = {}
# metadata_found = False
# for path, f in archive_iterator:
# if path == metadata_filepath:
# metadata_found = True
# lines = (line.decode("utf-8") for line in f)
# reader = csv.DictReader(lines, delimiter="\t", quoting=csv.QUOTE_NONE)
# for row in reader:
# # set absolute path for mp3 audio file
# if not row["path"].endswith(".mp3"):
# row["path"] += ".mp3"
# row["path"] = os.path.join(path_to_clips, row["path"])
# # accent -> accents in CV 8.0
# if "accents" in row:
# row["accent"] = row["accents"]
# del row["accents"]
# # if data is incomplete, fill with empty values
# for field in data_fields:
# if field not in row:
# row[field] = ""
# metadata[row["path"]] = row
# elif path.startswith(path_to_clips):
# assert metadata_found, "Found audio clips before the metadata TSV file."
# if not metadata:
# break
# if path in metadata:
# result = metadata[path]
# # set the audio feature and the path to the extracted file
# path = (
# os.path.join(local_extracted_archive, path)
# if local_extracted_archive
# else path
# )
# result["audio"] = {"path": path, "bytes": f.read()}
# # set path to None if the audio file doesn't exist locally (i.e. in streaming mode)
# result["path"] = path if local_extracted_archive else None
# yield path, result
# 'bn': {'duration': 1438112808, 'reportedSentences': 693, 'buckets': {'dev': 7748, 'invalidated': 5844, 'other': 192522,
# 'reported': 717, 'test': 7748, 'train': 14503, 'validated': 32754}, 'clips': 231120, 'splits': {'accent': {'': 1},
# 'age': {'thirties': 0.02, 'twenties': 0.22, '': 0.72, 'teens': 0.04, 'fourties': 0},
# 'gender': {'male': 0.24, '': 0.72, 'female': 0.04, 'other': 0}}, 'users': 19863, 'size': 8262390506,
# 'checksum': '599a5f7c9e55a297928da390345a19180b279a1f013081e7255a657fc99f98d5', 'avgDurationSecs': 6.222,
# 'validDurationSecs': 203807.316, 'totalHrs': 399.47, 'validHrs': 56.61},
|