File size: 9,043 Bytes
38b4fa5 a974962 38b4fa5 a974962 a9354d4 38b4fa5 b6113f7 38b4fa5 b6113f7 38b4fa5 cfb0f78 5f313da f2a1653 c671344 f2a1653 5f313da f2a1653 c671344 f2a1653 4458e86 c671344 4458e86 f2a1653 c671344 f2a1653 c671344 38b4fa5 df86b44 38b4fa5 cfb0f78 38b4fa5 cfb0f78 38b4fa5 800a531 38b4fa5 f9dd34a 38b4fa5 b6113f7 38b4fa5 f9dd34a 38b4fa5 f9dd34a 38b4fa5 f9dd34a 38b4fa5 f9dd34a 38b4fa5 f9dd34a 38b4fa5 f9dd34a 38b4fa5 f9dd34a 38b4fa5 f9dd34a 38b4fa5 800a531 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
---
annotations_creators:
- found
language_creators:
- found
language:
- nl
license:
- cc-by-nc-sa-4.0
multilinguality:
- monolingual
size_categories:
- 100K<n<1M
source_datasets:
- original
task_categories:
- text-generation
- fill-mask
- text-classification
task_ids:
- language-modeling
- masked-language-modeling
- sentiment-classification
paperswithcode_id: dbrd
pretty_name: DBRD
dataset_info:
config_name: plain_text
features:
- name: text
dtype: string
- name: label
dtype:
class_label:
names:
'0': neg
'1': pos
splits:
- name: train
num_bytes: 29496321
num_examples: 20028
- name: test
num_bytes: 3246239
num_examples: 2224
- name: unsupervised
num_bytes: 152732991
num_examples: 96264
download_size: 116489037
dataset_size: 185475551
configs:
- config_name: plain_text
data_files:
- split: train
path: plain_text/train-*
- split: test
path: plain_text/test-*
- split: unsupervised
path: plain_text/unsupervised-*
default: true
---
# Dataset Card for DBRD
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [Dutch Book Review Dataset (DBRD) homepage](https://benjaminvdb.github.io/DBRD)
- **Repository:** https://github.com/benjaminvdb/DBRD
- **Paper:** [The merits of Universal Language Model Fine-tuning for Small Datasets - a case with Dutch book reviews](https://arxiv.org/abs/1910.00896)
- **Leaderboard:**
- **Point of Contact:** [Benjamin van der Burgh](mailto:benjaminvdb@gmail.com)
### Dataset Summary
The DBRD (pronounced *dee-bird*) dataset contains over 110k book reviews of which 22k have associated binary sentiment polarity labels. It is intended as a benchmark for sentiment classification in Dutch and was created due to a lack of annotated datasets in Dutch that are suitable for this task.
### Supported Tasks and Leaderboards
- `text-generation`: The dataset can be used to train a model for sequence modeling, more specifically language modeling.
- `text-classification`: The dataset can be used to train a model for text classification, more specifically sentiment classification, using the provided positive/negative sentiment polarity labels.
### Languages
Non-Dutch reviews were filtered out using [langdetect](https://github.com/Mimino666/langdetect), and all reviews should therefore be in Dutch (nl). They are written by reviewers on [Hebban](https://www.hebban.nl), a Dutch website for book reviews.
## Dataset Structure
### Data Instances
The dataset contains three subsets: train, test, and unsupervised. The `train` and `test` sets contain labels, while the `unsupervised` set doesn't (the label value is -1 for each instance in `unsupervised`). Here's an example of a positive review, indicated with a label value of `1`.
```
{
'label': 1,
'text': 'Super om te lezen hoe haar leven is vergaan.\nBijzonder dat ze zo openhartig is geweest.'
}
```
### Data Fields
- `label`: either 0 (negative) or 1 (positive) in the supervised sets `train` and `test`. These are always -1 for the unsupervised set.
- `text`: book review as a utf-8 encoded string.
### Data Splits
The `train` and `test` sets were constructed by extracting all non-neutral reviews because we want to assign either a positive or negative polarity label to each instance. Furthermore, the positive (pos) and negative (neg) labels were balanced in both train and test sets. The remainder was added to the unsupervised set.
| | Train | Test | Unsupervised |
| ----- | ------ | ----- | ----------- |
| # No. texts | 20028 | 2224 | 96264 |
| % of total | 16.9% | 1.9% | 81.2% |
## Dataset Creation
### Curation Rationale
This dataset was created due to a lack of annotated Dutch text that is suitable for sentiment classification. Non-Dutch texts were therefore removed, but other than that, no curation was done.
### Source Data
The book reviews were taken from [Hebban](https://www.hebban.nl), a Dutch platform for book reviews.
#### Initial Data Collection and Normalization
The source code of the scraper and preprocessing process can be found in the [DBRD GitHub repository](https://github.com/benjaminvdb/DBRD).
#### Who are the source language producers?
The reviews are written by users of [Hebban](https://www.hebban.nl) and are of varying quality. Some are short, others long, and many contain spelling mistakes and other errors.
### Annotations
Each book review was accompanied by a 1 to 5-star rating. The annotations are produced by mapping the user-provided ratings to either a positive or negative label. 1 and 2-star ratings are given the negative label `0` and 4 and 5-star ratings the positive label `1`. Reviews with a rating of 3 stars are considered neutral and left out of the `train`/`test` sets and added to the unsupervised set.
#### Annotation process
Users of [Hebban](https://www.hebban.nl) were unaware that their reviews would be used in the creation of this dataset.
#### Who are the annotators?
The annotators are the [Hebban](https://www.hebban.nl) users who wrote the book reviews associated with the annotation. Anyone can register on [Hebban](https://www.hebban.nl) and it's impossible to know the demographics of this group.
### Personal and Sensitive Information
The book reviews and ratings are publicly available on [Hebban](https://www.hebban.nl) and no personal or otherwise sensitive information is contained in this dataset.
## Considerations for Using the Data
### Social Impact of Dataset
While predicting sentiment of book reviews in itself is not that interesting, the value of this dataset lies in its usage for benchmarking models. The dataset contains some challenges that are common to outings on the internet, such as spelling mistakes and other errors. It is therefore very useful for validating models for their real-world performance. These datasets are abundant for English but are harder to find for Dutch, making them a valuable resource for ML tasks in this language.
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
Reviews on [Hebban](https://www.hebban.nl) are usually written in Dutch, but some have been written in English and possibly in other languages. While we've done our best to filter out non-Dutch texts, it's hard to do this without errors. For example, some reviews are in multiple languages, and these might slip through. Also be aware that some commercial outings can appear in the text, making them different from other reviews and influencing your models. While this doesn't pose a major issue in most cases, we just wanted to mention it briefly.
## Additional Information
### Dataset Curators
This dataset was created by [Benjamin van der Burgh](mailto:benjaminvdb@gmail.com), who was working at [Leiden Institute of Advanced Computer Science (LIACS)](https://liacs.leidenuniv.nl/) at the time.
### Licensing Information
The dataset is licensed under a [Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License](https://creativecommons.org/licenses/by-nc-sa/4.0/).
### Citation Information
Please use the following citation when making use of this dataset in your work.
```
@article{DBLP:journals/corr/abs-1910-00896,
author = {Benjamin van der Burgh and
Suzan Verberne},
title = {The merits of Universal Language Model Fine-tuning for Small Datasets
- a case with Dutch book reviews},
journal = {CoRR},
volume = {abs/1910.00896},
year = {2019},
url = {http://arxiv.org/abs/1910.00896},
archivePrefix = {arXiv},
eprint = {1910.00896},
timestamp = {Fri, 04 Oct 2019 12:28:06 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-1910-00896.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
### Contributions
Thanks to [@benjaminvdb](https://github.com/benjaminvdb) for adding this dataset. |