|
"""Perplexity Sampled mC4 dataset based on Common Crawl.""" |
|
|
|
|
|
import gzip |
|
import json |
|
|
|
import datasets |
|
import kenlm |
|
import numpy as np |
|
from numpy.random import default_rng |
|
|
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
|
|
_DESCRIPTION = """\ |
|
A sampling-enabled version of mC4, the colossal, cleaned version of Common Crawl's web crawl corpus. |
|
|
|
Based on Common Crawl dataset: "https://commoncrawl.org". |
|
|
|
This is a version of the processed version of Google's mC4 dataset by AllenAI, in which sampling methods are implemented to perform on the fly. |
|
""" |
|
|
|
_CITATION = """ |
|
@article{2019t5, |
|
author = {Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu}, |
|
title = {Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer}, |
|
journal = {arXiv e-prints}, |
|
year = {2019}, |
|
archivePrefix = {arXiv}, |
|
eprint = {1910.10683}, |
|
} |
|
""" |
|
|
|
_URL = "https://github.com/allenai/allennlp/discussions/5056" |
|
|
|
_DATA_URL = "https://huggingface.co/datasets/allenai/c4/resolve/1ddc917116b730e1859edef32896ec5c16be51d0/multilingual/c4-{language}{split_suffix}.tfrecord-{index:05d}-of-{n_shards:05d}.json.gz" |
|
|
|
_LANGUAGES = [ |
|
"af", |
|
"am", |
|
"ar", |
|
"az", |
|
"be", |
|
"bg", |
|
"bg-Latn", |
|
"bn", |
|
"ca", |
|
"ceb", |
|
"co", |
|
"cs", |
|
"cy", |
|
"da", |
|
"de", |
|
"el", |
|
"el-Latn", |
|
"en", |
|
"eo", |
|
"es", |
|
"et", |
|
"eu", |
|
"fa", |
|
"fi", |
|
"fil", |
|
"fr", |
|
"fy", |
|
"ga", |
|
"gd", |
|
"gl", |
|
"gu", |
|
"ha", |
|
"haw", |
|
"hi", |
|
"hi-Latn", |
|
"hmn", |
|
"ht", |
|
"hu", |
|
"hy", |
|
"id", |
|
"ig", |
|
"is", |
|
"it", |
|
"iw", |
|
"ja", |
|
"ja-Latn", |
|
"jv", |
|
"ka", |
|
"kk", |
|
"km", |
|
"kn", |
|
"ko", |
|
"ku", |
|
"ky", |
|
"la", |
|
"lb", |
|
"lo", |
|
"lt", |
|
"lv", |
|
"mg", |
|
"mi", |
|
"mk", |
|
"ml", |
|
"mn", |
|
"mr", |
|
"ms", |
|
"mt", |
|
"my", |
|
"ne", |
|
"nl", |
|
"no", |
|
"ny", |
|
"pa", |
|
"pl", |
|
"ps", |
|
"pt", |
|
"ro", |
|
"ru", |
|
"ru-Latn", |
|
"sd", |
|
"si", |
|
"sk", |
|
"sl", |
|
"sm", |
|
"sn", |
|
"so", |
|
"sq", |
|
"sr", |
|
"st", |
|
"su", |
|
"sv", |
|
"sw", |
|
"ta", |
|
"te", |
|
"tg", |
|
"th", |
|
"tr", |
|
"uk", |
|
"und", |
|
"ur", |
|
"uz", |
|
"vi", |
|
"xh", |
|
"yi", |
|
"yo", |
|
"zh", |
|
"zh-Latn", |
|
"zu", |
|
] |
|
|
|
_N_SHARDS_PER_SPLIT = { |
|
"af": {"train": 64, "validation": 1}, |
|
"am": {"train": 16, "validation": 1}, |
|
"ar": {"train": 1024, "validation": 4}, |
|
"az": {"train": 256, "validation": 1}, |
|
"be": {"train": 128, "validation": 1}, |
|
"bg": {"train": 1024, "validation": 1}, |
|
"bg-Latn": {"train": 4, "validation": 1}, |
|
"bn": {"train": 512, "validation": 1}, |
|
"ca": {"train": 512, "validation": 1}, |
|
"ceb": {"train": 8, "validation": 1}, |
|
"co": {"train": 8, "validation": 1}, |
|
"cs": {"train": 1024, "validation": 2}, |
|
"cy": {"train": 256, "validation": 1}, |
|
"da": {"train": 1024, "validation": 1}, |
|
"de": {"train": 2048, "validation": 16}, |
|
"el": {"train": 1024, "validation": 2}, |
|
"el-Latn": {"train": 16, "validation": 1}, |
|
"en": {"train": 11264, "validation": 128}, |
|
"eo": {"train": 32, "validation": 1}, |
|
"es": {"train": 2048, "validation": 16}, |
|
"et": {"train": 256, "validation": 1}, |
|
"eu": {"train": 64, "validation": 1}, |
|
"fa": {"train": 1024, "validation": 2}, |
|
"fi": {"train": 1024, "validation": 1}, |
|
"fil": {"train": 64, "validation": 1}, |
|
"fr": {"train": 2048, "validation": 16}, |
|
"fy": {"train": 16, "validation": 1}, |
|
"ga": {"train": 16, "validation": 1}, |
|
"gd": {"train": 16, "validation": 1}, |
|
"gl": {"train": 128, "validation": 1}, |
|
"gu": {"train": 64, "validation": 1}, |
|
"ha": {"train": 8, "validation": 1}, |
|
"haw": {"train": 2, "validation": 1}, |
|
"hi": {"train": 1024, "validation": 2}, |
|
"hi-Latn": {"train": 16, "validation": 1}, |
|
"hmn": {"train": 8, "validation": 1}, |
|
"ht": {"train": 8, "validation": 1}, |
|
"hu": {"train": 1024, "validation": 2}, |
|
"hy": {"train": 128, "validation": 1}, |
|
"id": {"train": 1024, "validation": 4}, |
|
"ig": {"train": 4, "validation": 1}, |
|
"is": {"train": 128, "validation": 1}, |
|
"it": {"train": 1024, "validation": 8}, |
|
"iw": {"train": 1024, "validation": 1}, |
|
"ja": {"train": 1024, "validation": 8}, |
|
"ja-Latn": {"train": 8, "validation": 1}, |
|
"jv": {"train": 8, "validation": 1}, |
|
"ka": {"train": 256, "validation": 1}, |
|
"kk": {"train": 256, "validation": 1}, |
|
"km": {"train": 64, "validation": 1}, |
|
"kn": {"train": 64, "validation": 1}, |
|
"ko": {"train": 1024, "validation": 1}, |
|
"ku": {"train": 16, "validation": 1}, |
|
"ky": {"train": 64, "validation": 1}, |
|
"la": {"train": 64, "validation": 1}, |
|
"lb": {"train": 32, "validation": 1}, |
|
"lo": {"train": 8, "validation": 1}, |
|
"lt": {"train": 512, "validation": 1}, |
|
"lv": {"train": 256, "validation": 1}, |
|
"mg": {"train": 8, "validation": 1}, |
|
"mi": {"train": 4, "validation": 1}, |
|
"mk": {"train": 128, "validation": 1}, |
|
"ml": {"train": 128, "validation": 1}, |
|
"mn": {"train": 128, "validation": 1}, |
|
"mr": {"train": 1024, "validation": 1}, |
|
"ms": {"train": 512, "validation": 1}, |
|
"mt": {"train": 128, "validation": 1}, |
|
"my": {"train": 64, "validation": 1}, |
|
"ne": {"train": 256, "validation": 1}, |
|
"nl": {"train": 1024, "validation": 4}, |
|
"no": {"train": 1024, "validation": 1}, |
|
"ny": {"train": 4, "validation": 1}, |
|
"pa": {"train": 32, "validation": 1}, |
|
"pl": {"train": 1024, "validation": 4}, |
|
"ps": {"train": 16, "validation": 1}, |
|
"pt": {"train": 1024, "validation": 4}, |
|
"ro": {"train": 1024, "validation": 2}, |
|
"ru": {"train": 4096, "validation": 32}, |
|
"ru-Latn": {"train": 32, "validation": 1}, |
|
"sd": {"train": 64, "validation": 1}, |
|
"si": {"train": 64, "validation": 1}, |
|
"sk": {"train": 512, "validation": 1}, |
|
"sl": {"train": 256, "validation": 1}, |
|
"sm": {"train": 4, "validation": 1}, |
|
"sn": {"train": 8, "validation": 1}, |
|
"so": {"train": 64, "validation": 1}, |
|
"sq": {"train": 128, "validation": 1}, |
|
"sr": {"train": 256, "validation": 1}, |
|
"st": {"train": 2, "validation": 1}, |
|
"su": {"train": 4, "validation": 1}, |
|
"sv": {"train": 1024, "validation": 2}, |
|
"sw": {"train": 32, "validation": 1}, |
|
"ta": {"train": 256, "validation": 1}, |
|
"te": {"train": 128, "validation": 1}, |
|
"tg": {"train": 64, "validation": 1}, |
|
"th": {"train": 1024, "validation": 1}, |
|
"tr": {"train": 1024, "validation": 4}, |
|
"uk": {"train": 1024, "validation": 2}, |
|
"und": {"train": 3072, "validation": 32}, |
|
"ur": {"train": 128, "validation": 1}, |
|
"uz": {"train": 32, "validation": 1}, |
|
"vi": {"train": 1024, "validation": 4}, |
|
"xh": {"train": 2, "validation": 1}, |
|
"yi": {"train": 16, "validation": 1}, |
|
"yo": {"train": 2, "validation": 1}, |
|
"zh": {"train": 1024, "validation": 2}, |
|
"zh-Latn": {"train": 8, "validation": 1}, |
|
"zu": {"train": 8, "validation": 1}, |
|
} |
|
|
|
|
|
class Mc4SamplingConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for mC4 Sampling.""" |
|
|
|
def __init__(self, *args, languages, **kwargs): |
|
"""BuilderConfig for mC4 Sampling. |
|
Args: |
|
languages (:obj:`List[str]`): list of languages to load |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super().__init__( |
|
*args, |
|
name="+".join(languages), |
|
**kwargs, |
|
) |
|
self.languages = languages |
|
|
|
|
|
class Mc4Sampling(datasets.GeneratorBasedBuilder): |
|
"""mC4 Sampling, a colossal, cleaned version of Common Crawl's web crawl corpus.""" |
|
|
|
BUILDER_CONFIGS = [Mc4SamplingConfig(languages=[lang]) for lang in _LANGUAGES] |
|
BUILDER_CONFIG_CLASS = Mc4SamplingConfig |
|
|
|
def __init__(self, *args, writer_batch_size=None, **kwargs): |
|
self.data_files = kwargs.pop("data_files", {}) |
|
self.sampling_method = kwargs.pop("sampling_method", None) |
|
self.perplexity_model = kwargs.pop("perplexity_model", None) |
|
self.sampling_factor = kwargs.pop("sampling_factor", None) |
|
self.boundaries = kwargs.pop("boundaries", None) |
|
self.seed = kwargs.pop("seed", None) |
|
self.kwargs = kwargs |
|
if self.sampling_method: |
|
if self.seed is not None: |
|
self.rng = default_rng(self.seed) |
|
else: |
|
self.rng = default_rng() |
|
if self.sampling_method == "random": |
|
self.should_keep_doc = self._should_keep_doc_random |
|
else: |
|
|
|
|
|
logger.info("loading model = %s", self.perplexity_model) |
|
self.pp_model = kenlm.Model(self.perplexity_model) |
|
if self.sampling_method == "gaussian": |
|
self.should_keep_doc = self._should_keep_doc_gaussian |
|
else: |
|
self.should_keep_doc = self._should_keep_doc_step |
|
super().__init__(*args, writer_batch_size=writer_batch_size, **kwargs) |
|
|
|
def get_perplexity(self, doc): |
|
doc_log_score, doc_length = 0, 0 |
|
for line in doc.split("\n"): |
|
log_score = self.pp_model.score(line) |
|
length = len(line.split()) + 1 |
|
doc_log_score += log_score |
|
doc_length += length |
|
return 10.0 ** (-doc_log_score / doc_length) |
|
|
|
def _should_keep_doc_step(self, doc, factor=1.5e5, boundaries=None, **kwargs): |
|
perplexity = self.get_perplexity(doc) |
|
if boundaries is None: |
|
boundaries = [536394.99320948, 662247.50212365, 919250.87225178] |
|
if perplexity <= boundaries[0]: |
|
quartile_range = boundaries[0] |
|
elif boundaries[0] < perplexity < boundaries[1]: |
|
quartile_range = boundaries[1] - boundaries[0] |
|
elif boundaries[1] < perplexity < boundaries[2]: |
|
quartile_range = boundaries[2] - boundaries[1] |
|
elif perplexity >= boundaries[2]: |
|
quartile_range = 10 * boundaries[2] |
|
probability = factor / quartile_range |
|
return self.rng.uniform() < probability |
|
|
|
def _should_keep_doc_gaussian(self, doc, factor=0.78, boundaries=None, **kwargs): |
|
width = kwargs.get("width", 9 / 2) |
|
perplexity = self.get_perplexity(doc) |
|
if boundaries is not None: |
|
m = boundaries[1] |
|
else: |
|
m = 662247.50212365 |
|
exponential = np.exp((-1 / width) * ((perplexity - m) / m) ** 2) |
|
weighted_perplexity = factor * exponential |
|
return self.rng.uniform() < weighted_perplexity |
|
|
|
def _should_keep_doc_random(self, doc, factor=None, boundaries=None, **kwargs): |
|
if factor is None: |
|
factor = 0.5 |
|
return self.rng.uniform() <= factor |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"text": datasets.Value("string"), |
|
"timestamp": datasets.Value("string"), |
|
"url": datasets.Value("string"), |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage=_URL, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
data_urls = {} |
|
for split in ["train", "validation"]: |
|
data_urls[split] = [ |
|
_DATA_URL.format( |
|
language=self.config.name, |
|
split_suffix="-validation" if split == "validation" else "", |
|
index=index, |
|
n_shards=_N_SHARDS_PER_SPLIT[lang][split], |
|
) |
|
for lang in self.config.languages |
|
for index in range(_N_SHARDS_PER_SPLIT[lang][split]) |
|
] |
|
if self.data_files and "train" in self.data_files: |
|
train_downloaded_files = self.data_files["train"] |
|
if not isinstance(train_downloaded_files, (tuple, list)): |
|
train_downloaded_files = [train_downloaded_files] |
|
else: |
|
train_downloaded_files = dl_manager.download(data_urls["train"]) |
|
if self.data_files and "validation" in self.data_files: |
|
validation_downloaded_files = self.data_files["validation"] |
|
if not isinstance(validation_downloaded_files, (tuple, list)): |
|
validation_downloaded_files = [validation_downloaded_files] |
|
else: |
|
validation_downloaded_files = dl_manager.download(data_urls["validation"]) |
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepaths": train_downloaded_files}), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, gen_kwargs={"filepaths": validation_downloaded_files} |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepaths): |
|
"""This function returns the examples in the raw (text) form by iterating on all the files.""" |
|
id_ = 0 |
|
for filepath in filepaths: |
|
logger.info("generating examples from = %s", filepath) |
|
if filepath.endswith("jsonl") or filepath.endswith("json"): |
|
with open(filepath, "r", encoding="utf-8") as f: |
|
for line in f: |
|
if line: |
|
example = json.loads(line) |
|
yield id_, example |
|
id_ += 1 |
|
else: |
|
with gzip.open(open(filepath, "rb"), "rt", encoding="utf-8") as f: |
|
if self.sampling_method: |
|
logger.info("sampling method = %s", self.sampling_method) |
|
for line in f: |
|
if line: |
|
example = json.loads(line) |
|
if self.should_keep_doc( |
|
example["text"], |
|
factor=self.sampling_factor, |
|
boundaries=self.boundaries |
|
**self.kwargs): |
|
yield id_, example |
|
id_ += 1 |
|
else: |
|
for line in f: |
|
if line: |
|
example = json.loads(line) |
|
yield id_, example |
|
id_ += 1 |
|
|