Datasets:

Modalities:
Text
Languages:
English
ArXiv:
Libraries:
Datasets
License:
File size: 9,112 Bytes
34ead2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39c51f6
34ead2b
39c51f6
34ead2b
 
 
 
 
 
 
 
 
39c51f6
34ead2b
39c51f6
34ead2b
 
 
 
 
 
 
 
 
39c51f6
34ead2b
39c51f6
34ead2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
"""The General Language Understanding Evaluation (GLUE) benchmark."""


import csv
import os
import textwrap
import json

import numpy as np

import datasets


_GLUE_CITATION = """\
@inproceedings{wang2019glue,
  title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},
  author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},
  note={In the Proceedings of ICLR.},
  year={2019}
}
"""

_GLUE_DESCRIPTION = """\
GLUE, the General Language Understanding Evaluation benchmark
(https://gluebenchmark.com/) is a collection of resources for training,
evaluating, and analyzing natural language understanding systems.
"""

_MNLI_BASE_KWARGS = dict(
    text_features={
        "premise": "sentence1",
        "hypothesis": "sentence2",
    },
    label_classes=["entailment", "neutral", "contradiction"],
    label_column="label",
    data_url="https://dl.fbaipublicfiles.com/glue/data/MNLI.zip",
    data_dir="MNLI",
    citation=textwrap.dedent(
        """\
      @InProceedings{N18-1101,
        author = "Williams, Adina
                  and Nangia, Nikita
                  and Bowman, Samuel",
        title = "A Broad-Coverage Challenge Corpus for
                 Sentence Understanding through Inference",
        booktitle = "Proceedings of the 2018 Conference of
                     the North American Chapter of the
                     Association for Computational Linguistics:
                     Human Language Technologies, Volume 1 (Long
                     Papers)",
        year = "2018",
        publisher = "Association for Computational Linguistics",
        pages = "1112--1122",
        location = "New Orleans, Louisiana",
        url = "http://aclweb.org/anthology/N18-1101"
      }
      @article{bowman2015large,
        title={A large annotated corpus for learning natural language inference},
        author={Bowman, Samuel R and Angeli, Gabor and Potts, Christopher and Manning, Christopher D},
        journal={arXiv preprint arXiv:1508.05326},
        year={2015}
      }"""
    ),
    url="http://www.nyu.edu/projects/bowman/multinli/",
)


class GlueConfig(datasets.BuilderConfig):
    """BuilderConfig for GLUE."""

    def __init__(
        self,
        text_features,
        label_column,
        data_url,
        data_dir,
        citation,
        url,
        label_classes=None,
        process_label=lambda x: x,
        **kwargs,
    ):
        """BuilderConfig for GLUE.
        Args:
          text_features: `dict[string, string]`, map from the name of the feature
            dict for each text field to the name of the column in the tsv file
          label_column: `string`, name of the column in the tsv file corresponding
            to the label
          data_url: `string`, url to download the zip file from
          data_dir: `string`, the path to the folder containing the tsv files in the
            downloaded zip
          citation: `string`, citation for the data set
          url: `string`, url for information about the data set
          label_classes: `list[string]`, the list of classes if the label is
            categorical. If not provided, then the label will be of type
            `datasets.Value('float32')`.
          process_label: `Function[string, any]`, function  taking in the raw value
            of the label and processing it to the form required by the label feature
          **kwargs: keyword arguments forwarded to super.
        """
        super(GlueConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs)
        self.text_features = text_features
        self.label_column = label_column
        self.label_classes = label_classes
        self.data_url = data_url
        self.data_dir = data_dir
        self.citation = citation
        self.url = url
        self.process_label = process_label


class Glue(datasets.GeneratorBasedBuilder):
    """The General Language Understanding Evaluation (GLUE) benchmark."""

    BUILDER_CONFIGS = [
        GlueConfig(
            name=bias_amplified_splits_type,
            description=textwrap.dedent(
                """\
            The Multi-Genre Natural Language Inference Corpus is a crowdsourced
            collection of sentence pairs with textual entailment annotations. Given a premise sentence
            and a hypothesis sentence, the task is to predict whether the premise entails the hypothesis
            (entailment), contradicts the hypothesis (contradiction), or neither (neutral). The premise sentences are
            gathered from ten different sources, including transcribed speech, fiction, and government reports.
            We use the standard test set, for which we obtained private labels from the authors, and evaluate
            on both the matched (in-domain) and mismatched (cross-domain) section. We also use and recommend
            the SNLI corpus as 550k examples of auxiliary training data."""
            ),
            **_MNLI_BASE_KWARGS,
        ) for bias_amplified_splits_type in ["minority_examples", "partial_input"]
    ]

    def _info(self):
        features = {text_feature: datasets.Value("string") for text_feature in self.config.text_features.keys()}
        if self.config.label_classes:
            features["label"] = datasets.features.ClassLabel(names=self.config.label_classes)
        else:
            features["label"] = datasets.Value("float32")
        features["idx"] = datasets.Value("int32")
        return datasets.DatasetInfo(
            description=_GLUE_DESCRIPTION,
            features=datasets.Features(features),
            homepage=self.config.url,
            citation=self.config.citation + "\n" + _GLUE_CITATION,
        )

    def _split_generators(self, dl_manager):
        return [
            datasets.SplitGenerator(
                name="train.biased",
                gen_kwargs={
                    "filepath": dl_manager.download(os.path.join(self.config.name, "train.biased.jsonl")),
                },
            ),
            datasets.SplitGenerator(
                name="train.anti_biased",
                gen_kwargs={
                    "filepath": dl_manager.download(os.path.join(self.config.name, "train.anti_biased.jsonl")),
                },
            ),
            datasets.SplitGenerator(
                name="validation_matched.biased",
                gen_kwargs={
                    "filepath": dl_manager.download(os.path.join(self.config.name, "validation_matched.biased.jsonl")),
                },
            ),
            datasets.SplitGenerator(
                name="validation_matched.anti_biased",
                gen_kwargs={
                    "filepath": dl_manager.download(os.path.join(self.config.name, "validation_matched.anti_biased.jsonl")),
                },
            ),
            datasets.SplitGenerator(
                name="validation_mismatched.biased",
                gen_kwargs={
                    "filepath": dl_manager.download(os.path.join(self.config.name, "validation_mismatched.biased.jsonl")),
                },
            ),
            datasets.SplitGenerator(
                name="validation_mismatched.anti_biased",
                gen_kwargs={
                    "filepath": dl_manager.download(os.path.join(self.config.name, "validation_mismatched.anti_biased.jsonl")),
                },
            ),
        ]

    def _generate_examples(self, filepath):
        """Generate examples.

        Args:
          filepath: a string

        Yields:
          dictionaries containing "premise", "hypothesis" and "label" strings
        """
        process_label = self.config.process_label
        label_classes = self.config.label_classes

        for idx, line in enumerate(open(filepath, "rb")):
            if line is not None:
                line = line.strip().decode("utf-8")
                item = json.loads(line)
                example = {
                    "idx": item["idx"],
                    "premise": item["premise"],
                    "hypothesis": item["hypothesis"],
                }
                if self.config.label_column in item:
                    label = item[self.config.label_column]
                    example["label"] = process_label(label)
                else:
                    example["label"] = process_label(-1)

                yield example["idx"], example