|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
The extended Anatomical Entity Mention corpus (AnatEM) consists of 1212 documents |
|
(approx. 250,000 words) manually annotated to identify over 13,000 mentions of anatomical |
|
entities. Each annotation is assigned one of 12 granularity-based types such as Cellular |
|
component, Tissue and Organ, defined with reference to the Common Anatomy Reference Ontology |
|
(see https://bioportal.bioontology.org/ontologies/CARO). |
|
""" |
|
from pathlib import Path |
|
from typing import Dict, Iterator, Tuple |
|
|
|
import datasets |
|
|
|
from .bigbiohub import kb_features |
|
from .bigbiohub import BigBioConfig |
|
from .bigbiohub import Tasks |
|
from .bigbiohub import parse_brat_file |
|
from .bigbiohub import brat_parse_to_bigbio_kb |
|
|
|
|
|
_LANGUAGES = ['English'] |
|
_PUBMED = True |
|
_LOCAL = False |
|
_CITATION = """\ |
|
@article{pyysalo2014anatomical, |
|
title={Anatomical entity mention recognition at literature scale}, |
|
author={Pyysalo, Sampo and Ananiadou, Sophia}, |
|
journal={Bioinformatics}, |
|
volume={30}, |
|
number={6}, |
|
pages={868--875}, |
|
year={2014}, |
|
publisher={Oxford University Press} |
|
} |
|
""" |
|
|
|
_DATASETNAME = "anat_em" |
|
_DISPLAYNAME = "AnatEM" |
|
|
|
|
|
_DESCRIPTION = """\ |
|
The extended Anatomical Entity Mention corpus (AnatEM) consists of 1212 \ |
|
documents (approx. 250,000 words) manually annotated to identify over 13,000 \ |
|
mentions of anatomical entities. Each annotation is assigned one of 12 \ |
|
granularity-based types such as Cellular component, Tissue and Organ, defined \ |
|
with reference to the Common Anatomy Reference Ontology. |
|
""" |
|
|
|
_HOMEPAGE = "http://nactem.ac.uk/anatomytagger/#AnatEM" |
|
|
|
_LICENSE = 'Creative Commons Attribution Share Alike 3.0 Unported' |
|
|
|
_URLS = {_DATASETNAME: "http://nactem.ac.uk/anatomytagger/AnatEM-1.0.2.tar.gz"} |
|
|
|
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION] |
|
|
|
_SOURCE_VERSION = "1.0.2" |
|
_BIGBIO_VERSION = "1.0.0" |
|
|
|
|
|
class AnatEMDataset(datasets.GeneratorBasedBuilder): |
|
"""The extended Anatomical Entity Mention corpus (AnatEM)""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
BigBioConfig( |
|
name="anat_em_source", |
|
version=SOURCE_VERSION, |
|
description="AnatEM source schema", |
|
schema="source", |
|
subset_id="anat_em", |
|
), |
|
BigBioConfig( |
|
name="anat_em_bigbio_kb", |
|
version=BIGBIO_VERSION, |
|
description="AnatEM BigBio schema", |
|
schema="bigbio_kb", |
|
subset_id="anat_em", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "anat_em_source" |
|
|
|
def _info(self): |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"document_id": datasets.Value("string"), |
|
"document_type": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"text_type": datasets.Value( |
|
"string" |
|
), |
|
"entities": [ |
|
{ |
|
"entity_id": datasets.Value("string"), |
|
"type": datasets.Value("string"), |
|
"offsets": datasets.Sequence([datasets.Value("int32")]), |
|
"text": datasets.Sequence(datasets.Value("string")), |
|
} |
|
], |
|
} |
|
) |
|
|
|
elif self.config.schema == "bigbio_kb": |
|
features = kb_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=str(_LICENSE), |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
urls = _URLS[_DATASETNAME] |
|
data_dir = Path(dl_manager.download_and_extract(urls)) |
|
|
|
standoff_dir = data_dir / "AnatEM-1.0.2" / "standoff" |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"split_dir": standoff_dir / "train"}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"split_dir": standoff_dir / "test"}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={"split_dir": standoff_dir / "devel"}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, split_dir: Path) -> Iterator[Tuple[str, Dict]]: |
|
if self.config.name == "anat_em_source": |
|
for file in split_dir.iterdir(): |
|
|
|
if file.name.startswith("._") or file.name.endswith(".ann"): |
|
continue |
|
|
|
|
|
brat_example = parse_brat_file(file) |
|
source_example = self._to_source_example(file, brat_example) |
|
|
|
yield source_example["document_id"], source_example |
|
|
|
elif self.config.name == "anat_em_bigbio_kb": |
|
for file in split_dir.iterdir(): |
|
|
|
if file.name.startswith("._") or file.name.endswith(".ann"): |
|
continue |
|
|
|
|
|
brat_example = parse_brat_file(file) |
|
kb_example = brat_parse_to_bigbio_kb(brat_example) |
|
kb_example["id"] = kb_example["document_id"] |
|
|
|
|
|
_, text_type = self.get_document_type_and_text_type(file) |
|
kb_example["passages"][0]["type"] = text_type |
|
|
|
yield kb_example["id"], kb_example |
|
|
|
def _to_source_example(self, input_file: Path, brat_example: Dict) -> Dict: |
|
""" |
|
Converts an example extracted using the default brat parsing logic to the source format |
|
of the given corpus. |
|
""" |
|
document_type, text_type = self.get_document_type_and_text_type(input_file) |
|
|
|
source_example = { |
|
"document_id": brat_example["document_id"], |
|
"document_type": document_type, |
|
"text": brat_example["text"], |
|
"text_type": text_type, |
|
} |
|
|
|
id_prefix = brat_example["document_id"] + "_" |
|
|
|
source_example["entities"] = [] |
|
for entity_annotation in brat_example["text_bound_annotations"]: |
|
entity_ann = entity_annotation.copy() |
|
|
|
entity_ann["entity_id"] = id_prefix + entity_ann["id"] |
|
entity_ann.pop("id") |
|
|
|
source_example["entities"].append(entity_ann) |
|
|
|
return source_example |
|
|
|
def get_document_type_and_text_type(self, input_file: Path) -> Tuple[str, str]: |
|
""" |
|
Extracts the document type (PubMed(PM) or PubMedCentral (PMC)) and the respective |
|
text type (abstract for PM and sec or caption for (PMC) from the name of the given |
|
file, e.g.: |
|
|
|
PMID-9778569.txt -> ("PM", "abstract") |
|
|
|
PMC-1274342-sec-02.txt -> ("PMC", "sec") |
|
|
|
PMC-1592597-caption-02.ann -> ("PMC", "caption") |
|
|
|
""" |
|
name_parts = str(input_file.stem).split("-") |
|
|
|
if name_parts[0] == "PMID": |
|
return "PM", "abstract" |
|
|
|
elif name_parts[0] == "PMC": |
|
return "PMC", name_parts[2] |
|
else: |
|
raise AssertionError(f"Unexpected file prefix {name_parts[0]}") |
|
|