gabrielaltay
commited on
Commit
•
6652454
1
Parent(s):
e3b1d6d
upload hubscripts/anat_em_hub.py to hub from bigbio repo
Browse files- anat_em.py +227 -0
anat_em.py
ADDED
@@ -0,0 +1,227 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""
|
16 |
+
The extended Anatomical Entity Mention corpus (AnatEM) consists of 1212 documents
|
17 |
+
(approx. 250,000 words) manually annotated to identify over 13,000 mentions of anatomical
|
18 |
+
entities. Each annotation is assigned one of 12 granularity-based types such as Cellular
|
19 |
+
component, Tissue and Organ, defined with reference to the Common Anatomy Reference Ontology
|
20 |
+
(see https://bioportal.bioontology.org/ontologies/CARO).
|
21 |
+
"""
|
22 |
+
from pathlib import Path
|
23 |
+
from typing import Dict, Iterator, Tuple
|
24 |
+
|
25 |
+
import datasets
|
26 |
+
|
27 |
+
from .bigbiohub import kb_features
|
28 |
+
from .bigbiohub import BigBioConfig
|
29 |
+
from .bigbiohub import Tasks
|
30 |
+
|
31 |
+
_LANGUAGES = ['English']
|
32 |
+
_PUBMED = True
|
33 |
+
_LOCAL = False
|
34 |
+
_CITATION = """\
|
35 |
+
@article{pyysalo2014anatomical,
|
36 |
+
title={Anatomical entity mention recognition at literature scale},
|
37 |
+
author={Pyysalo, Sampo and Ananiadou, Sophia},
|
38 |
+
journal={Bioinformatics},
|
39 |
+
volume={30},
|
40 |
+
number={6},
|
41 |
+
pages={868--875},
|
42 |
+
year={2014},
|
43 |
+
publisher={Oxford University Press}
|
44 |
+
}
|
45 |
+
"""
|
46 |
+
|
47 |
+
_DATASETNAME = "anat_em"
|
48 |
+
_DISPLAYNAME = "AnatEM"
|
49 |
+
|
50 |
+
|
51 |
+
_DESCRIPTION = """\
|
52 |
+
The extended Anatomical Entity Mention corpus (AnatEM) consists of 1212 \
|
53 |
+
documents (approx. 250,000 words) manually annotated to identify over 13,000 \
|
54 |
+
mentions of anatomical entities. Each annotation is assigned one of 12 \
|
55 |
+
granularity-based types such as Cellular component, Tissue and Organ, defined \
|
56 |
+
with reference to the Common Anatomy Reference Ontology.
|
57 |
+
"""
|
58 |
+
|
59 |
+
_HOMEPAGE = "http://nactem.ac.uk/anatomytagger/#AnatEM"
|
60 |
+
|
61 |
+
_LICENSE = 'Creative Commons Attribution Share Alike 3.0 Unported'
|
62 |
+
|
63 |
+
_URLS = {_DATASETNAME: "http://nactem.ac.uk/anatomytagger/AnatEM-1.0.2.tar.gz"}
|
64 |
+
|
65 |
+
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION]
|
66 |
+
|
67 |
+
_SOURCE_VERSION = "1.0.2"
|
68 |
+
_BIGBIO_VERSION = "1.0.0"
|
69 |
+
|
70 |
+
|
71 |
+
class AnatEMDataset(datasets.GeneratorBasedBuilder):
|
72 |
+
"""The extended Anatomical Entity Mention corpus (AnatEM)"""
|
73 |
+
|
74 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
75 |
+
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
|
76 |
+
|
77 |
+
BUILDER_CONFIGS = [
|
78 |
+
BigBioConfig(
|
79 |
+
name="anat_em_source",
|
80 |
+
version=SOURCE_VERSION,
|
81 |
+
description="AnatEM source schema",
|
82 |
+
schema="source",
|
83 |
+
subset_id="anat_em",
|
84 |
+
),
|
85 |
+
BigBioConfig(
|
86 |
+
name="anat_em_bigbio_kb",
|
87 |
+
version=BIGBIO_VERSION,
|
88 |
+
description="AnatEM BigBio schema",
|
89 |
+
schema="bigbio_kb",
|
90 |
+
subset_id="anat_em",
|
91 |
+
),
|
92 |
+
]
|
93 |
+
|
94 |
+
DEFAULT_CONFIG_NAME = "anat_em_source"
|
95 |
+
|
96 |
+
def _info(self):
|
97 |
+
if self.config.schema == "source":
|
98 |
+
features = datasets.Features(
|
99 |
+
{
|
100 |
+
"document_id": datasets.Value("string"),
|
101 |
+
"document_type": datasets.Value("string"), # Either PMC or PM
|
102 |
+
"text": datasets.Value("string"),
|
103 |
+
"text_type": datasets.Value(
|
104 |
+
"string"
|
105 |
+
), # Either abstract (for PM) or sec / caption (for PMC)
|
106 |
+
"entities": [
|
107 |
+
{
|
108 |
+
"entity_id": datasets.Value("string"),
|
109 |
+
"type": datasets.Value("string"),
|
110 |
+
"offsets": datasets.Sequence([datasets.Value("int32")]),
|
111 |
+
"text": datasets.Sequence(datasets.Value("string")),
|
112 |
+
}
|
113 |
+
],
|
114 |
+
}
|
115 |
+
)
|
116 |
+
|
117 |
+
elif self.config.schema == "bigbio_kb":
|
118 |
+
features = kb_features
|
119 |
+
|
120 |
+
return datasets.DatasetInfo(
|
121 |
+
description=_DESCRIPTION,
|
122 |
+
features=features,
|
123 |
+
homepage=_HOMEPAGE,
|
124 |
+
license=str(_LICENSE),
|
125 |
+
citation=_CITATION,
|
126 |
+
)
|
127 |
+
|
128 |
+
def _split_generators(self, dl_manager):
|
129 |
+
urls = _URLS[_DATASETNAME]
|
130 |
+
data_dir = Path(dl_manager.download_and_extract(urls))
|
131 |
+
|
132 |
+
standoff_dir = data_dir / "AnatEM-1.0.2" / "standoff"
|
133 |
+
|
134 |
+
return [
|
135 |
+
datasets.SplitGenerator(
|
136 |
+
name=datasets.Split.TRAIN,
|
137 |
+
gen_kwargs={"split_dir": standoff_dir / "train"},
|
138 |
+
),
|
139 |
+
datasets.SplitGenerator(
|
140 |
+
name=datasets.Split.TEST,
|
141 |
+
gen_kwargs={"split_dir": standoff_dir / "test"},
|
142 |
+
),
|
143 |
+
datasets.SplitGenerator(
|
144 |
+
name=datasets.Split.VALIDATION,
|
145 |
+
gen_kwargs={"split_dir": standoff_dir / "devel"},
|
146 |
+
),
|
147 |
+
]
|
148 |
+
|
149 |
+
def _generate_examples(self, split_dir: Path) -> Iterator[Tuple[str, Dict]]:
|
150 |
+
if self.config.name == "anat_em_source":
|
151 |
+
for file in split_dir.iterdir():
|
152 |
+
# Ignore hidden files and annotation files - we just consider the brat text files
|
153 |
+
if file.name.startswith("._") or file.name.endswith(".ann"):
|
154 |
+
continue
|
155 |
+
|
156 |
+
# Read brat annotations for the given text file and convert example to the source format
|
157 |
+
brat_example = parsing.parse_brat_file(file)
|
158 |
+
source_example = self._to_source_example(file, brat_example)
|
159 |
+
|
160 |
+
yield source_example["document_id"], source_example
|
161 |
+
|
162 |
+
elif self.config.name == "anat_em_bigbio_kb":
|
163 |
+
for file in split_dir.iterdir():
|
164 |
+
# Ignore hidden files and annotation files - we just consider the brat text files
|
165 |
+
if file.name.startswith("._") or file.name.endswith(".ann"):
|
166 |
+
continue
|
167 |
+
|
168 |
+
# Read brat annotations for the given text file and convert example to the BigBio-KB format
|
169 |
+
brat_example = parsing.parse_brat_file(file)
|
170 |
+
kb_example = parsing.brat_parse_to_bigbio_kb(brat_example)
|
171 |
+
kb_example["id"] = kb_example["document_id"]
|
172 |
+
|
173 |
+
# Fix text type annotation for the converted example
|
174 |
+
_, text_type = self.get_document_type_and_text_type(file)
|
175 |
+
kb_example["passages"][0]["type"] = text_type
|
176 |
+
|
177 |
+
yield kb_example["id"], kb_example
|
178 |
+
|
179 |
+
def _to_source_example(self, input_file: Path, brat_example: Dict) -> Dict:
|
180 |
+
"""
|
181 |
+
Converts an example extracted using the default brat parsing logic to the source format
|
182 |
+
of the given corpus.
|
183 |
+
"""
|
184 |
+
document_type, text_type = self.get_document_type_and_text_type(input_file)
|
185 |
+
|
186 |
+
source_example = {
|
187 |
+
"document_id": brat_example["document_id"],
|
188 |
+
"document_type": document_type,
|
189 |
+
"text": brat_example["text"],
|
190 |
+
"text_type": text_type,
|
191 |
+
}
|
192 |
+
|
193 |
+
id_prefix = brat_example["document_id"] + "_"
|
194 |
+
|
195 |
+
source_example["entities"] = []
|
196 |
+
for entity_annotation in brat_example["text_bound_annotations"]:
|
197 |
+
entity_ann = entity_annotation.copy()
|
198 |
+
|
199 |
+
entity_ann["entity_id"] = id_prefix + entity_ann["id"]
|
200 |
+
entity_ann.pop("id")
|
201 |
+
|
202 |
+
source_example["entities"].append(entity_ann)
|
203 |
+
|
204 |
+
return source_example
|
205 |
+
|
206 |
+
def get_document_type_and_text_type(self, input_file: Path) -> Tuple[str, str]:
|
207 |
+
"""
|
208 |
+
Extracts the document type (PubMed(PM) or PubMedCentral (PMC)) and the respective
|
209 |
+
text type (abstract for PM and sec or caption for (PMC) from the name of the given
|
210 |
+
file, e.g.:
|
211 |
+
|
212 |
+
PMID-9778569.txt -> ("PM", "abstract")
|
213 |
+
|
214 |
+
PMC-1274342-sec-02.txt -> ("PMC", "sec")
|
215 |
+
|
216 |
+
PMC-1592597-caption-02.ann -> ("PMC", "caption")
|
217 |
+
|
218 |
+
"""
|
219 |
+
name_parts = str(input_file.stem).split("-")
|
220 |
+
|
221 |
+
if name_parts[0] == "PMID":
|
222 |
+
return "PM", "abstract"
|
223 |
+
|
224 |
+
elif name_parts[0] == "PMC":
|
225 |
+
return "PMC", name_parts[2]
|
226 |
+
else:
|
227 |
+
raise AssertionError(f"Unexpected file prefix {name_parts[0]}")
|