|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
The authors present BioInfer (Bio Information Extraction Resource), a new public |
|
resource providing an annotated corpus of biomedical English. We describe an |
|
annotation scheme capturing named entities and their relationships along with a |
|
dependency analysis of sentence syntax. We further present ontologies defining |
|
the types of entities and relationships annotated in the corpus. Currently, the |
|
corpus contains 1100 sentences from abstracts of biomedical research articles |
|
annotated for relationships, named entities, as well as syntactic dependencies. |
|
""" |
|
|
|
import os |
|
import xml.etree.ElementTree as ET |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
|
|
from .bigbiohub import kb_features |
|
from .bigbiohub import BigBioConfig |
|
from .bigbiohub import Tasks |
|
|
|
_LANGUAGES = ['English'] |
|
_PUBMED = True |
|
_LOCAL = False |
|
_CITATION = """\ |
|
@article{pyysalo2007bioinfer, |
|
title = {BioInfer: a corpus for information extraction in the biomedical domain}, |
|
author = { |
|
Pyysalo, Sampo and Ginter, Filip and Heimonen, Juho and Bj{\"o}rne, Jari |
|
and Boberg, Jorma and J{\"a}rvinen, Jouni and Salakoski, Tapio |
|
}, |
|
year = 2007, |
|
journal = {BMC bioinformatics}, |
|
publisher = {BioMed Central}, |
|
volume = 8, |
|
number = 1, |
|
pages = {1--24} |
|
} |
|
""" |
|
|
|
_DATASETNAME = "bioinfer" |
|
_DISPLAYNAME = "BioInfer" |
|
|
|
_DESCRIPTION = """\ |
|
A corpus targeted at protein, gene, and RNA relationships which serves as a |
|
resource for the development of information extraction systems and their |
|
components such as parsers and domain analyzers. Currently, the corpus contains |
|
1100 sentences from abstracts of biomedical research articles annotated for |
|
relationships, named entities, as well as syntactic dependencies. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/metalrt/ppi-dataset" |
|
|
|
_LICENSE = 'Creative Commons Attribution 2.0 Generic' |
|
|
|
_URLS = { |
|
_DATASETNAME: { |
|
"train": "https://github.com/metalrt/ppi-dataset/raw/master/csv_output/BioInfer-train.xml", |
|
"test": "https://github.com/metalrt/ppi-dataset/raw/master/csv_output/BioInfer-test.xml", |
|
} |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.RELATION_EXTRACTION, Tasks.NAMED_ENTITY_RECOGNITION] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
_BIGBIO_VERSION = "1.0.0" |
|
|
|
|
|
class BioinferDataset(datasets.GeneratorBasedBuilder): |
|
""" |
|
1100 sentences from abstracts of biomedical research articles annotated |
|
for relationships, named entities, as well as syntactic dependencies. |
|
""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
BigBioConfig( |
|
name="bioinfer_source", |
|
version=SOURCE_VERSION, |
|
description="BioInfer source schema", |
|
schema="source", |
|
subset_id="bioinfer", |
|
), |
|
BigBioConfig( |
|
name="bioinfer_bigbio_kb", |
|
version=BIGBIO_VERSION, |
|
description="BioInfer BigBio schema", |
|
schema="bigbio_kb", |
|
subset_id="bioinfer", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "bioinfer_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
|
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"document_id": datasets.Value("string"), |
|
"type": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"entities": [ |
|
{ |
|
"id": datasets.Value("string"), |
|
"offsets": [[datasets.Value("int32")]], |
|
"text": [datasets.Value("string")], |
|
"type": datasets.Value("string"), |
|
"normalized": [ |
|
{ |
|
"db_name": datasets.Value("string"), |
|
"db_id": datasets.Value("string"), |
|
} |
|
], |
|
} |
|
], |
|
"relations": [ |
|
{ |
|
"id": datasets.Value("string"), |
|
"type": datasets.Value("string"), |
|
"arg1_id": datasets.Value("string"), |
|
"arg2_id": datasets.Value("string"), |
|
"normalized": [ |
|
{ |
|
"db_name": datasets.Value("string"), |
|
"db_id": datasets.Value("string"), |
|
} |
|
], |
|
} |
|
], |
|
} |
|
) |
|
elif self.config.schema == "bigbio_kb": |
|
features = kb_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=str(_LICENSE), |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
urls = _URLS[_DATASETNAME] |
|
data_dir = dl_manager.download(urls) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": data_dir["train"], |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": data_dir["test"], |
|
"split": "test", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath, split: str) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
tree = ET.parse(filepath) |
|
root = tree.getroot() |
|
if self.config.schema == "source": |
|
for guid, sentence in enumerate(root.iter("sentence")): |
|
example = self._create_example(sentence) |
|
example["text"] = sentence.attrib["text"] |
|
example["type"] = "Sentence" |
|
yield guid, example |
|
|
|
elif self.config.schema == "bigbio_kb": |
|
for guid, sentence in enumerate(root.iter("sentence")): |
|
example = self._create_example(sentence) |
|
example["passages"] = [ |
|
{ |
|
"id": f"{sentence.attrib['id']}__text", |
|
"type": "Sentence", |
|
"text": [sentence.attrib["text"]], |
|
"offsets": [(0, len(sentence.attrib["text"]))], |
|
} |
|
] |
|
example["events"] = [] |
|
example["coreferences"] = [] |
|
example["id"] = guid |
|
yield guid, example |
|
|
|
def _create_example(self, sentence): |
|
example = {} |
|
example["document_id"] = sentence.attrib["id"] |
|
example["entities"] = [] |
|
example["relations"] = [] |
|
for tag in sentence: |
|
if tag.tag == "entity": |
|
example["entities"].append(self._add_entity(tag)) |
|
elif tag.tag == "interaction": |
|
example["relations"].append(self._add_interaction(tag)) |
|
else: |
|
raise ValueError(f"unknown tags: {tag.tag}") |
|
return example |
|
|
|
@staticmethod |
|
def _add_entity(entity): |
|
offsets = [ |
|
[int(o) for o in offset.split("-")] |
|
for offset in entity.attrib["charOffset"].split(",") |
|
] |
|
|
|
if len(offsets) > 1: |
|
text = [] |
|
i = 0 |
|
for start, end in offsets: |
|
chunk_len = end - start |
|
text.append(entity.attrib["text"][i : chunk_len + i]) |
|
i += chunk_len |
|
while ( |
|
i < len(entity.attrib["text"]) and entity.attrib["text"][i] == " " |
|
): |
|
i += 1 |
|
else: |
|
text = [entity.attrib["text"]] |
|
return { |
|
"id": entity.attrib["id"], |
|
"offsets": offsets, |
|
"text": text, |
|
"type": entity.attrib["type"], |
|
"normalized": {}, |
|
} |
|
|
|
@staticmethod |
|
def _add_interaction(interaction): |
|
return { |
|
"id": interaction.attrib["id"], |
|
"type": interaction.attrib["type"], |
|
"arg1_id": interaction.attrib["e1"], |
|
"arg2_id": interaction.attrib["e2"], |
|
"normalized": {}, |
|
} |
|
|