File size: 10,272 Bytes
e85b514 f4bcff3 e85b514 f4bcff3 e85b514 f4bcff3 e85b514 f4bcff3 e85b514 f4bcff3 e85b514 f4bcff3 e85b514 f4bcff3 e85b514 f4bcff3 e85b514 f4bcff3 e85b514 f4bcff3 e85b514 f4bcff3 e85b514 f4bcff3 e85b514 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
We introduce BIOMRC, a large-scale cloze-style biomedical MRC dataset. Care was taken to reduce noise, compared to the
previous BIOREAD dataset of Pappas et al. (2018). Experiments show that simple heuristics do not perform well on the
new dataset and that two neural MRC models that had been tested on BIOREAD perform much better on BIOMRC, indicating
that the new dataset is indeed less noisy or at least that its task is more feasible. Non-expert human performance is
also higher on the new dataset compared to BIOREAD, and biomedical experts perform even better. We also introduce a new
BERT-based MRC model, the best version of which substantially outperforms all other methods tested, reaching or
surpassing the accuracy of biomedical experts in some experiments. We make the new dataset available in three different
sizes, also releasing our code, and providing a leaderboard.
"""
import itertools as it
import json
import datasets
from .bigbiohub import qa_features
from .bigbiohub import BigBioConfig
from .bigbiohub import Tasks
_LANGUAGES = ["English"]
_PUBMED = True
_LOCAL = False
_CITATION = """\
@inproceedings{pappas-etal-2020-biomrc,
title = "{B}io{MRC}: A Dataset for Biomedical Machine Reading Comprehension",
author = "Pappas, Dimitris and
Stavropoulos, Petros and
Androutsopoulos, Ion and
McDonald, Ryan",
booktitle = "Proceedings of the 19th SIGBioMed Workshop on Biomedical Language Processing",
month = jul,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2020.bionlp-1.15",
pages = "140--149",
}
"""
_DATASETNAME = "biomrc"
_DISPLAYNAME = "BIOMRC"
_DESCRIPTION = """\
We introduce BIOMRC, a large-scale cloze-style biomedical MRC dataset. Care was taken to reduce noise, compared to the
previous BIOREAD dataset of Pappas et al. (2018). Experiments show that simple heuristics do not perform well on the
new dataset and that two neural MRC models that had been tested on BIOREAD perform much better on BIOMRC, indicating
that the new dataset is indeed less noisy or at least that its task is more feasible. Non-expert human performance is
also higher on the new dataset compared to BIOREAD, and biomedical experts perform even better. We also introduce a new
BERT-based MRC model, the best version of which substantially outperforms all other methods tested, reaching or
surpassing the accuracy of biomedical experts in some experiments. We make the new dataset available in three different
sizes, also releasing our code, and providing a leaderboard.
"""
_HOMEPAGE = "https://github.com/PetrosStav/BioMRC_code"
_LICENSE = "License information unavailable"
_BASE_URL = "https://huggingface.co/datasets/biomrc/resolve/main/data/"
_URLS = {
"large": {
"A": {
"train": _BASE_URL + "biomrc_large/dataset_train.jsonl.gz",
"val": _BASE_URL + "biomrc_large/dataset_val.jsonl.gz",
"test": _BASE_URL + "biomrc_large/dataset_test.jsonl.gz",
},
"B": {
"train": _BASE_URL + "biomrc_large/dataset_train_B.jsonl.gz",
"val": _BASE_URL + "biomrc_large/dataset_val_B.jsonl.gz",
"test": _BASE_URL + "biomrc_large/dataset_test_B.jsonl.gz",
},
},
"small": {
"A": {
"train": _BASE_URL + "biomrc_small/dataset_train_small.jsonl.gz",
"val": _BASE_URL + "biomrc_small/dataset_val_small.jsonl.gz",
"test": _BASE_URL + "biomrc_small/dataset_test_small.jsonl.gz",
},
"B": {
"train": _BASE_URL + "biomrc_small/dataset_train_small_B.jsonl.gz",
"val": _BASE_URL + "biomrc_small/dataset_val_small_B.jsonl.gz",
"test": _BASE_URL + "biomrc_small/dataset_test_small_B.jsonl.gz",
},
},
"tiny": {
"A": {"test": _BASE_URL + "biomrc_tiny/dataset_tiny.jsonl.gz"},
"B": {"test": _BASE_URL + "biomrc_tiny/dataset_tiny_B.jsonl.gz"},
},
}
_SUPPORTED_TASKS = [Tasks.QUESTION_ANSWERING]
_SOURCE_VERSION = "1.0.0"
_BIGBIO_VERSION = "1.0.0"
class BiomrcDataset(datasets.GeneratorBasedBuilder):
"""BioMRC: A Dataset for Biomedical Machine Reading Comprehension"""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
BUILDER_CONFIGS = []
for biomrc_setting in ["A", "B"]:
for biomrc_version in ["large", "small", "tiny"]:
subset_id = f"biomrc_{biomrc_version}_{biomrc_setting}"
BUILDER_CONFIGS.append(
BigBioConfig(
name=f"{subset_id}_source",
version=SOURCE_VERSION,
description=f"BioMRC Version {biomrc_version} Setting {biomrc_setting} source schema",
schema="source",
subset_id=subset_id,
)
)
BUILDER_CONFIGS.append(
BigBioConfig(
name=f"{subset_id}_bigbio_qa",
version=BIGBIO_VERSION,
description=f"BioMRC Version {biomrc_version} Setting {biomrc_setting} BigBio schema",
schema="bigbio_qa",
subset_id=subset_id,
)
)
DEFAULT_CONFIG_NAME = "biomrc_large_B_source"
def _info(self):
if self.config.schema == "source":
features = datasets.Features(
{
"abstract": datasets.Value("string"),
"title": datasets.Value("string"),
"entities_list": datasets.features.Sequence(
{
"pseudoidentifier": datasets.Value("string"),
"identifier": datasets.Value("string"),
"synonyms": datasets.Value("string"),
}
),
"answer": {
"pseudoidentifier": datasets.Value("string"),
"identifier": datasets.Value("string"),
"synonyms": datasets.Value("string"),
},
}
)
elif self.config.schema == "bigbio_qa":
features = qa_features
else:
raise NotImplementedError()
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=str(_LICENSE),
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
_, version, setting = self.config.subset_id.split("_")
downloaded_files = dl_manager.download_and_extract(_URLS[version][setting])
if version == "tiny":
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"filepath": downloaded_files["test"]},
),
]
else:
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"filepath": downloaded_files["train"]},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={"filepath": downloaded_files["val"]},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"filepath": downloaded_files["test"]},
),
]
def _generate_examples(self, filepath):
"""Yields examples as (key, example) tuples."""
if self.config.schema == "source":
with open(filepath, encoding="utf-8") as fp:
for _id, line in enumerate(fp):
example = json.loads(line)
example["entities_list"] = [
self._parse_dict_from_entity(entity) for entity in example["entities_list"]
]
example["answer"] = self._parse_dict_from_entity(example["answer"])
yield _id, example
elif self.config.schema == "bigbio_qa":
with open(filepath, encoding="utf-8") as fp:
uid = it.count(0)
for _id, line in enumerate(fp):
example = json.loads(line)
# remove info such as code, label, synonyms from answer and choices
# f.e. @entity1 :: ('9606', 'Species') :: ['patients', 'patient']"
example = {
"id": next(uid),
"question_id": next(uid),
"document_id": next(uid),
"question": example["title"],
"type": "multiple_choice",
"choices": [x.split(" :: ")[0] for x in example["entities_list"]],
"context": example["abstract"],
"answer": [example["answer"].split(" :: ")[0]],
}
yield _id, example
def _parse_dict_from_entity(self, entity):
if "::" in entity:
pseudoidentifier, identifier, synonyms = entity.split(" :: ")
return {
"pseudoidentifier": pseudoidentifier,
"identifier": identifier,
"synonyms": synonyms,
}
else:
return {"pseudoidentifier": entity, "identifier": "", "synonyms": ""}
|