File size: 10,010 Bytes
81bbf87 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from pathlib import Path
from typing import List
import datasets
from .bigbiohub import kb_features
from .bigbiohub import BigBioConfig
from .bigbiohub import Tasks
_DATASETNAME = "bionlp_st_2011_rel"
_DISPLAYNAME = "BioNLP 2011 REL"
_SOURCE_VIEW_NAME = "source"
_UNIFIED_VIEW_NAME = "bigbio"
_LANGUAGES = ['English']
_PUBMED = True
_LOCAL = False
_CITATION = """\
@inproceedings{10.5555/2107691.2107703,
author = {Pyysalo, Sampo and Ohta, Tomoko and Tsujii, Jun'ichi},
title = {Overview of the Entity Relations (REL) Supporting Task of BioNLP Shared Task 2011},
year = {2011},
isbn = {9781937284091},
publisher = {Association for Computational Linguistics},
address = {USA},
abstract = {This paper presents the Entity Relations (REL) task,
a supporting task of the BioNLP Shared Task 2011. The task concerns
the extraction of two types of part-of relations between a gene/protein
and an associated entity. Four teams submitted final results for
the REL task, with the highest-performing system achieving 57.7%
F-score. While experiments suggest use of the data can help improve
event extraction performance, the task data has so far received only
limited use in support of event extraction. The REL task continues
as an open challenge, with all resources available from the shared
task website.},
booktitle = {Proceedings of the BioNLP Shared Task 2011 Workshop},
pages = {83–88},
numpages = {6},
location = {Portland, Oregon},
series = {BioNLP Shared Task '11}
}
"""
_DESCRIPTION = """\
The Entity Relations (REL) task is a supporting task of the BioNLP Shared Task 2011.
The task concerns the extraction of two types of part-of relations between a
gene/protein and an associated entity.
"""
_HOMEPAGE = "https://github.com/openbiocorpora/bionlp-st-2011-rel"
_LICENSE = 'GENIA Project License for Annotated Corpora'
_URLs = {
"source": "https://github.com/openbiocorpora/bionlp-st-2011-rel/archive/refs/heads/master.zip",
"bigbio_kb": "https://github.com/openbiocorpora/bionlp-st-2011-rel/archive/refs/heads/master.zip",
}
_SUPPORTED_TASKS = [
Tasks.NAMED_ENTITY_RECOGNITION,
Tasks.RELATION_EXTRACTION,
Tasks.COREFERENCE_RESOLUTION,
]
_SOURCE_VERSION = "1.0.0"
_BIGBIO_VERSION = "1.0.0"
class bionlp_st_2011_rel(datasets.GeneratorBasedBuilder):
"""The Entity Relations (REL) task is a supporting task of the BioNLP Shared Task 2011."""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
BUILDER_CONFIGS = [
BigBioConfig(
name="bionlp_st_2011_rel_source",
version=SOURCE_VERSION,
description="bionlp_st_2011_rel source schema",
schema="source",
subset_id="bionlp_st_2011_rel",
),
BigBioConfig(
name="bionlp_st_2011_rel_bigbio_kb",
version=BIGBIO_VERSION,
description="bionlp_st_2011_rel BigBio schema",
schema="bigbio_kb",
subset_id="bionlp_st_2011_rel",
),
]
DEFAULT_CONFIG_NAME = "bionlp_st_2011_rel_source"
_FILE_SUFFIX = [".a1", ".rel", ".ann"]
def _info(self):
"""
- `features` defines the schema of the parsed data set. The schema depends on the
chosen `config`: If it is `_SOURCE_VIEW_NAME` the schema is the schema of the
original data. If `config` is `_UNIFIED_VIEW_NAME`, then the schema is the
canonical KB-task schema defined in `biomedical/schemas/kb.py`.
"""
if self.config.schema == "source":
features = datasets.Features(
{
"id": datasets.Value("string"),
"document_id": datasets.Value("string"),
"text": datasets.Value("string"),
"text_bound_annotations": [ # T line in brat, e.g. type or event trigger
{
"offsets": datasets.Sequence([datasets.Value("int32")]),
"text": datasets.Sequence(datasets.Value("string")),
"type": datasets.Value("string"),
"id": datasets.Value("string"),
}
],
"events": [ # E line in brat
{
"trigger": datasets.Value(
"string"
), # refers to the text_bound_annotation of the trigger,
"id": datasets.Value("string"),
"type": datasets.Value("string"),
"arguments": datasets.Sequence(
{
"role": datasets.Value("string"),
"ref_id": datasets.Value("string"),
}
),
}
],
"relations": [ # R line in brat
{
"id": datasets.Value("string"),
"head": {
"ref_id": datasets.Value("string"),
"role": datasets.Value("string"),
},
"tail": {
"ref_id": datasets.Value("string"),
"role": datasets.Value("string"),
},
"type": datasets.Value("string"),
}
],
"equivalences": [ # Equiv line in brat
{
"id": datasets.Value("string"),
"ref_ids": datasets.Sequence(datasets.Value("string")),
}
],
"attributes": [ # M or A lines in brat
{
"id": datasets.Value("string"),
"type": datasets.Value("string"),
"ref_id": datasets.Value("string"),
"value": datasets.Value("string"),
}
],
"normalizations": [ # N lines in brat
{
"id": datasets.Value("string"),
"type": datasets.Value("string"),
"ref_id": datasets.Value("string"),
"resource_name": datasets.Value(
"string"
), # Name of the resource, e.g. "Wikipedia"
"cuid": datasets.Value(
"string"
), # ID in the resource, e.g. 534366
"text": datasets.Value(
"string"
), # Human readable description/name of the entity, e.g. "Barack Obama"
}
],
},
)
elif self.config.schema == "bigbio_kb":
features = kb_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=str(_LICENSE),
citation=_CITATION,
)
def _split_generators(
self, dl_manager: datasets.DownloadManager
) -> List[datasets.SplitGenerator]:
my_urls = _URLs[self.config.schema]
data_dir = Path(dl_manager.download_and_extract(my_urls))
data_files = {
"train": data_dir
/ f"bionlp-st-2011-rel-master"
/ "original-data"
/ "train",
"dev": data_dir / f"bionlp-st-2011-rel-master" / "original-data" / "devel",
"test": data_dir / f"bionlp-st-2011-rel-master" / "original-data" / "test",
}
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"data_files": data_files["train"]},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={"data_files": data_files["dev"]},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"data_files": data_files["test"]},
),
]
def _generate_examples(self, data_files: Path):
if self.config.schema == "source":
txt_files = list(data_files.glob("*txt"))
for guid, txt_file in enumerate(txt_files):
example = parsing.parse_brat_file(txt_file, self._FILE_SUFFIX)
example["id"] = str(guid)
yield guid, example
elif self.config.schema == "bigbio_kb":
txt_files = list(data_files.glob("*txt"))
for guid, txt_file in enumerate(txt_files):
example = parsing.brat_parse_to_bigbio_kb(
parsing.parse_brat_file(txt_file, self._FILE_SUFFIX)
)
example["id"] = str(guid)
yield guid, example
else:
raise ValueError(f"Invalid config: {self.config.name}")
|