gabrielaltay
commited on
Commit
•
b88c542
1
Parent(s):
004288c
upload hubscripts/biorelex_hub.py to hub from bigbio repo
Browse files- biorelex.py +416 -0
biorelex.py
ADDED
@@ -0,0 +1,416 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
"""
|
17 |
+
BioRelEx is a biological relation extraction dataset. Version 1.0 contains 2010
|
18 |
+
annotated sentences that describe binding interactions between various
|
19 |
+
biological entities (proteins, chemicals, etc.). 1405 sentences are for
|
20 |
+
training, another 201 sentences are for validation. They are publicly available
|
21 |
+
at https://github.com/YerevaNN/BioRelEx/releases. Another 404 sentences are for
|
22 |
+
testing which are kept private for at this Codalab competition
|
23 |
+
https://competitions.codalab.org/competitions/20468. All sentences contain words
|
24 |
+
"bind", "bound" or "binding". For every sentence we provide: 1) Complete
|
25 |
+
annotations of all biological entities that appear in the sentence 2) Entity
|
26 |
+
types (32 types) and grounding information for most of the proteins and families
|
27 |
+
(links to uniprot, interpro and other databases) 3) Coreference between entities
|
28 |
+
in the same sentence (e.g. abbreviations and synonyms) 4) Binding interactions
|
29 |
+
between the annotated entities 5) Binding interaction types: positive, negative
|
30 |
+
(A does not bind B) and neutral (A may bind to B)
|
31 |
+
"""
|
32 |
+
|
33 |
+
import itertools as it
|
34 |
+
import json
|
35 |
+
from collections import defaultdict
|
36 |
+
from typing import Dict, List, Tuple
|
37 |
+
|
38 |
+
import datasets
|
39 |
+
|
40 |
+
from .bigbiohub import kb_features
|
41 |
+
from .bigbiohub import BigBioConfig
|
42 |
+
from .bigbiohub import Tasks
|
43 |
+
|
44 |
+
# TODO: Add BibTeX citation
|
45 |
+
_LANGUAGES = ['English']
|
46 |
+
_PUBMED = True
|
47 |
+
_LOCAL = False
|
48 |
+
_CITATION = """\
|
49 |
+
@inproceedings{khachatrian2019biorelex,
|
50 |
+
title = "{B}io{R}el{E}x 1.0: Biological Relation Extraction Benchmark",
|
51 |
+
author = "Khachatrian, Hrant and
|
52 |
+
Nersisyan, Lilit and
|
53 |
+
Hambardzumyan, Karen and
|
54 |
+
Galstyan, Tigran and
|
55 |
+
Hakobyan, Anna and
|
56 |
+
Arakelyan, Arsen and
|
57 |
+
Rzhetsky, Andrey and
|
58 |
+
Galstyan, Aram",
|
59 |
+
booktitle = "Proceedings of the 18th BioNLP Workshop and Shared Task",
|
60 |
+
month = aug,
|
61 |
+
year = "2019",
|
62 |
+
address = "Florence, Italy",
|
63 |
+
publisher = "Association for Computational Linguistics",
|
64 |
+
url = "https://aclanthology.org/W19-5019",
|
65 |
+
doi = "10.18653/v1/W19-5019",
|
66 |
+
pages = "176--190"
|
67 |
+
}
|
68 |
+
"""
|
69 |
+
|
70 |
+
_DATASETNAME = "biorelex"
|
71 |
+
_DISPLAYNAME = "BioRelEx"
|
72 |
+
|
73 |
+
_DESCRIPTION = """\
|
74 |
+
BioRelEx is a biological relation extraction dataset. Version 1.0 contains 2010
|
75 |
+
annotated sentences that describe binding interactions between various
|
76 |
+
biological entities (proteins, chemicals, etc.). 1405 sentences are for
|
77 |
+
training, another 201 sentences are for validation. They are publicly available
|
78 |
+
at https://github.com/YerevaNN/BioRelEx/releases. Another 404 sentences are for
|
79 |
+
testing which are kept private for at this Codalab competition
|
80 |
+
https://competitions.codalab.org/competitions/20468. All sentences contain words
|
81 |
+
"bind", "bound" or "binding". For every sentence we provide: 1) Complete
|
82 |
+
annotations of all biological entities that appear in the sentence 2) Entity
|
83 |
+
types (32 types) and grounding information for most of the proteins and families
|
84 |
+
(links to uniprot, interpro and other databases) 3) Coreference between entities
|
85 |
+
in the same sentence (e.g. abbreviations and synonyms) 4) Binding interactions
|
86 |
+
between the annotated entities 5) Binding interaction types: positive, negative
|
87 |
+
(A does not bind B) and neutral (A may bind to B)"""
|
88 |
+
|
89 |
+
_HOMEPAGE = "https://github.com/YerevaNN/BioRelEx"
|
90 |
+
|
91 |
+
_LICENSE = 'License information unavailable'
|
92 |
+
|
93 |
+
_URLS = {
|
94 |
+
_DATASETNAME: {
|
95 |
+
"train": "https://github.com/YerevaNN/BioRelEx/releases/download/1.0alpha7/1.0alpha7.train.json",
|
96 |
+
"dev": "https://github.com/YerevaNN/BioRelEx/releases/download/1.0alpha7/1.0alpha7.dev.json",
|
97 |
+
},
|
98 |
+
}
|
99 |
+
|
100 |
+
_SUPPORTED_TASKS = [
|
101 |
+
Tasks.NAMED_ENTITY_RECOGNITION,
|
102 |
+
Tasks.NAMED_ENTITY_DISAMBIGUATION,
|
103 |
+
Tasks.RELATION_EXTRACTION,
|
104 |
+
Tasks.COREFERENCE_RESOLUTION,
|
105 |
+
]
|
106 |
+
|
107 |
+
_SOURCE_VERSION = "1.0.0"
|
108 |
+
|
109 |
+
_BIGBIO_VERSION = "1.0.0"
|
110 |
+
|
111 |
+
|
112 |
+
class BioRelExDataset(datasets.GeneratorBasedBuilder):
|
113 |
+
"""BioRelEx is a biological relation extraction dataset."""
|
114 |
+
|
115 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
116 |
+
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
|
117 |
+
|
118 |
+
BUILDER_CONFIGS = [
|
119 |
+
BigBioConfig(
|
120 |
+
name="biorelex_source",
|
121 |
+
version=SOURCE_VERSION,
|
122 |
+
description="BioRelEx source schema",
|
123 |
+
schema="source",
|
124 |
+
subset_id="biorelex",
|
125 |
+
),
|
126 |
+
BigBioConfig(
|
127 |
+
name="biorelex_bigbio_kb",
|
128 |
+
version=BIGBIO_VERSION,
|
129 |
+
description="BioRelEx BigBio schema",
|
130 |
+
schema="bigbio_kb",
|
131 |
+
subset_id="biorelex",
|
132 |
+
),
|
133 |
+
]
|
134 |
+
|
135 |
+
DEFAULT_CONFIG_NAME = "biorelex_source"
|
136 |
+
|
137 |
+
def _info(self) -> datasets.DatasetInfo:
|
138 |
+
|
139 |
+
if self.config.schema == "source":
|
140 |
+
features = datasets.Features(
|
141 |
+
{
|
142 |
+
"paperid": datasets.Value("string"),
|
143 |
+
"interactions": [
|
144 |
+
{
|
145 |
+
"participants": datasets.Sequence(datasets.Value("int32")),
|
146 |
+
"type": datasets.Value("string"),
|
147 |
+
"implicit": datasets.Value("bool"),
|
148 |
+
"label": datasets.Value("int32"),
|
149 |
+
}
|
150 |
+
],
|
151 |
+
"url": datasets.Value("string"),
|
152 |
+
"text": datasets.Value("string"),
|
153 |
+
"entities": [
|
154 |
+
{
|
155 |
+
"is_state": datasets.Value("bool"),
|
156 |
+
"label": datasets.Value("string"),
|
157 |
+
"names": [
|
158 |
+
{
|
159 |
+
"text": datasets.Value("string"),
|
160 |
+
"is_mentioned": datasets.Value("bool"),
|
161 |
+
"mentions": datasets.Sequence(
|
162 |
+
[datasets.Value("int32")]
|
163 |
+
),
|
164 |
+
}
|
165 |
+
],
|
166 |
+
"grounding": [
|
167 |
+
{
|
168 |
+
"comment": datasets.Value("string"),
|
169 |
+
"entrez_gene": datasets.Value("string"),
|
170 |
+
"source": datasets.Value("string"),
|
171 |
+
"link": datasets.Value("string"),
|
172 |
+
"hgnc_symbol": datasets.Value("string"),
|
173 |
+
"organism": datasets.Value("string"),
|
174 |
+
}
|
175 |
+
],
|
176 |
+
"is_mentioned": datasets.Value("bool"),
|
177 |
+
"is_mutant": datasets.Value("bool"),
|
178 |
+
}
|
179 |
+
],
|
180 |
+
"_line_": datasets.Value("int32"),
|
181 |
+
"id": datasets.Value("string"),
|
182 |
+
}
|
183 |
+
)
|
184 |
+
elif self.config.schema == "bigbio_kb":
|
185 |
+
features = kb_features
|
186 |
+
|
187 |
+
return datasets.DatasetInfo(
|
188 |
+
description=_DESCRIPTION,
|
189 |
+
features=features,
|
190 |
+
homepage=_HOMEPAGE,
|
191 |
+
license=str(_LICENSE),
|
192 |
+
citation=_CITATION,
|
193 |
+
)
|
194 |
+
|
195 |
+
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
|
196 |
+
"""Returns SplitGenerators."""
|
197 |
+
|
198 |
+
urls = _URLS[_DATASETNAME]
|
199 |
+
data_dir = dl_manager.download_and_extract(urls)
|
200 |
+
|
201 |
+
return [
|
202 |
+
datasets.SplitGenerator(
|
203 |
+
name=datasets.Split.TRAIN,
|
204 |
+
gen_kwargs={
|
205 |
+
"filepath": data_dir["train"],
|
206 |
+
},
|
207 |
+
),
|
208 |
+
datasets.SplitGenerator(
|
209 |
+
name=datasets.Split.VALIDATION,
|
210 |
+
gen_kwargs={
|
211 |
+
"filepath": data_dir["dev"],
|
212 |
+
},
|
213 |
+
),
|
214 |
+
]
|
215 |
+
|
216 |
+
def _generate_examples(self, filepath) -> Tuple[int, Dict]:
|
217 |
+
"""Yields examples as (key, example) tuples."""
|
218 |
+
|
219 |
+
with open(filepath, "r", encoding="utf8") as f:
|
220 |
+
data = json.load(f)
|
221 |
+
data = self._prep(data)
|
222 |
+
|
223 |
+
if self.config.schema == "source":
|
224 |
+
for key, example in enumerate(data):
|
225 |
+
yield key, example
|
226 |
+
|
227 |
+
elif self.config.schema == "bigbio_kb":
|
228 |
+
for key, example in enumerate(data):
|
229 |
+
example_ = self._source_to_kb(example)
|
230 |
+
yield key, example_
|
231 |
+
|
232 |
+
def _prep(self, data):
|
233 |
+
for example in data:
|
234 |
+
for entity in example["entities"]:
|
235 |
+
entity["names"] = self._json_dict_to_list(entity["names"], "text")
|
236 |
+
if entity["grounding"] is None:
|
237 |
+
entity["grounding"] = []
|
238 |
+
else:
|
239 |
+
entity["grounding"] = [entity["grounding"]]
|
240 |
+
return data
|
241 |
+
|
242 |
+
def _json_dict_to_list(self, json, new_key):
|
243 |
+
list_ = []
|
244 |
+
for key, values in json.items():
|
245 |
+
assert isinstance(values, dict), "Child element is not a dict"
|
246 |
+
assert new_key not in values, "New key already in values"
|
247 |
+
values[new_key] = key
|
248 |
+
list_.append(values)
|
249 |
+
return list_
|
250 |
+
|
251 |
+
def _source_to_kb(self, example):
|
252 |
+
example_id = example["id"]
|
253 |
+
entities_, corefs_, ref_id_map = self._get_entities(
|
254 |
+
example_id, example["entities"]
|
255 |
+
)
|
256 |
+
relations_ = self._get_relations(
|
257 |
+
example_id, ref_id_map, example["interactions"]
|
258 |
+
)
|
259 |
+
|
260 |
+
document_ = {
|
261 |
+
"id": example_id,
|
262 |
+
"document_id": example["paperid"],
|
263 |
+
"passages": [
|
264 |
+
{
|
265 |
+
"id": example_id + ".sent",
|
266 |
+
"type": "sentence",
|
267 |
+
"text": [example["text"]],
|
268 |
+
"offsets": [[0, len(example["text"])]],
|
269 |
+
}
|
270 |
+
],
|
271 |
+
"entities": entities_,
|
272 |
+
"coreferences": corefs_,
|
273 |
+
"relations": relations_,
|
274 |
+
"events": [],
|
275 |
+
}
|
276 |
+
return document_
|
277 |
+
|
278 |
+
def _get_entities(self, example_id, entities):
|
279 |
+
entities_ = []
|
280 |
+
corefs_ = []
|
281 |
+
|
282 |
+
eid = it.count(0)
|
283 |
+
cid = it.count(0)
|
284 |
+
# dictionary mapping the original ref ids (indexes of entities) for relations
|
285 |
+
org_rel_ref_id_2_kb_entity_id = defaultdict(list)
|
286 |
+
|
287 |
+
for relation_ref_id, entity in enumerate(entities):
|
288 |
+
|
289 |
+
# get normalization for entities
|
290 |
+
normalized_ = self._get_normalizations(entity)
|
291 |
+
|
292 |
+
# create entity for each synonym
|
293 |
+
coref_eids_ = []
|
294 |
+
for names in entity["names"]:
|
295 |
+
for id, mention in enumerate(names["mentions"]):
|
296 |
+
entity_id = example_id + ".ent" + str(next(eid)) + "_" + str(id)
|
297 |
+
org_rel_ref_id_2_kb_entity_id[relation_ref_id].append(entity_id)
|
298 |
+
coref_eids_.append(entity_id)
|
299 |
+
entities_.append(
|
300 |
+
{
|
301 |
+
"id": entity_id,
|
302 |
+
"type": entity["label"],
|
303 |
+
"text": [names["text"]],
|
304 |
+
"offsets": [mention],
|
305 |
+
"normalized": normalized_,
|
306 |
+
}
|
307 |
+
)
|
308 |
+
|
309 |
+
# create coreferences
|
310 |
+
coref_id = example_id + ".coref" + str(next(cid))
|
311 |
+
corefs_.append(
|
312 |
+
{
|
313 |
+
"id": coref_id,
|
314 |
+
"entity_ids": coref_eids_,
|
315 |
+
}
|
316 |
+
)
|
317 |
+
return entities_, corefs_, org_rel_ref_id_2_kb_entity_id
|
318 |
+
|
319 |
+
def _get_normalizations(self, entity):
|
320 |
+
normalized_ = []
|
321 |
+
if entity["grounding"]:
|
322 |
+
assert len(entity["grounding"]) == 1
|
323 |
+
if entity["grounding"][0]["entrez_gene"] != "NA":
|
324 |
+
normalized_.append(
|
325 |
+
{
|
326 |
+
"db_name": "NCBI gene",
|
327 |
+
"db_id": entity["grounding"][0]["entrez_gene"],
|
328 |
+
}
|
329 |
+
)
|
330 |
+
if entity["grounding"][0]["hgnc_symbol"] != "NA":
|
331 |
+
normalized_.append(
|
332 |
+
{"db_name": "hgnc", "db_id": entity["grounding"][0]["hgnc_symbol"]}
|
333 |
+
)
|
334 |
+
|
335 |
+
# maybe parse some other ids?
|
336 |
+
source = entity["grounding"][0]["source"]
|
337 |
+
if (
|
338 |
+
source != "NCBI gene"
|
339 |
+
and source != "https://www.genenames.org/data/genegroup/"
|
340 |
+
): # NCBI gene is same as entrez
|
341 |
+
normalized_.append(
|
342 |
+
self._parse_id_from_link(
|
343 |
+
entity["grounding"][0]["link"], entity["grounding"][0]["source"]
|
344 |
+
)
|
345 |
+
)
|
346 |
+
return normalized_
|
347 |
+
|
348 |
+
def _get_relations(self, example_id, org_rel_ref_id_2_kb_entity_id, interactions):
|
349 |
+
rid = it.count(0)
|
350 |
+
relations_ = []
|
351 |
+
for interaction in interactions:
|
352 |
+
rel_id = example_id + ".rel" + str(next(rid))
|
353 |
+
assert len(interaction["participants"]) == 2
|
354 |
+
|
355 |
+
subjects = org_rel_ref_id_2_kb_entity_id[interaction["participants"][0]]
|
356 |
+
objects = org_rel_ref_id_2_kb_entity_id[interaction["participants"][1]]
|
357 |
+
|
358 |
+
for s in subjects:
|
359 |
+
for o in objects:
|
360 |
+
relations_.append(
|
361 |
+
{
|
362 |
+
"id": rel_id + "s" + s + ".o" + o,
|
363 |
+
"type": interaction["type"],
|
364 |
+
"arg1_id": s,
|
365 |
+
"arg2_id": o,
|
366 |
+
"normalized": [],
|
367 |
+
}
|
368 |
+
)
|
369 |
+
return relations_
|
370 |
+
|
371 |
+
def _parse_id_from_link(self, link, source):
|
372 |
+
source_template_map = {
|
373 |
+
"uniprot": ["https://www.uniprot.org/uniprot/"],
|
374 |
+
"pubchem:compound": ["https://pubchem.ncbi.nlm.nih.gov/compound/"],
|
375 |
+
"pubchem:substance": ["https://pubchem.ncbi.nlm.nih.gov/substance/"],
|
376 |
+
"pfam": ["https://pfam.xfam.org/family/", "http://pfam.xfam.org/family/"],
|
377 |
+
"interpro": [
|
378 |
+
"http://www.ebi.ac.uk/interpro/entry/",
|
379 |
+
"https://www.ebi.ac.uk/interpro/entry/",
|
380 |
+
],
|
381 |
+
"DrugBank": ["https://www.drugbank.ca/drugs/"],
|
382 |
+
}
|
383 |
+
|
384 |
+
# fix exceptions manually
|
385 |
+
if source == "https://enzyme.expasy.org/EC/2.5.1.18" and link == source:
|
386 |
+
return {"db_name": "intenz", "db_id": "2.5.1.18"}
|
387 |
+
elif (
|
388 |
+
source == "https://www.genome.jp/kegg-bin/show_pathway?map=ko04120"
|
389 |
+
and link == source
|
390 |
+
):
|
391 |
+
return {"db_name": "kegg", "db_id": "ko04120"}
|
392 |
+
elif (
|
393 |
+
source == "https://www.genome.jp/dbget-bin/www_bget?enzyme+2.7.11.1"
|
394 |
+
and link == source
|
395 |
+
):
|
396 |
+
return {"db_name": "intenz", "db_id": "2.7.11.1"}
|
397 |
+
elif (
|
398 |
+
source == "http://www.chemspider.com/Chemical-Structure.7995676.html"
|
399 |
+
and link == source
|
400 |
+
):
|
401 |
+
return {"db_name": "chemspider", "db_id": "7995676"}
|
402 |
+
elif source == "intenz":
|
403 |
+
id = link.split("=")[0]
|
404 |
+
return {"db_name": source, "db_id": id}
|
405 |
+
else:
|
406 |
+
link_templates = source_template_map[source]
|
407 |
+
for template in link_templates:
|
408 |
+
if link.startswith(template):
|
409 |
+
id = link.replace(template, "")
|
410 |
+
id = id.split("?")[0]
|
411 |
+
assert "/" not in id
|
412 |
+
return {"db_name": source, "db_id": id}
|
413 |
+
|
414 |
+
assert (
|
415 |
+
False
|
416 |
+
), f"No template found for {link}, choices: {repr(link_templates)}"
|