Datasets:

Modalities:
Tabular
Text
Languages:
English
Size:
< 1K
Libraries:
Datasets
License:
File size: 7,962 Bytes
884d29f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5be315
884d29f
 
 
 
 
 
 
 
 
 
 
 
499380a
 
 
884d29f
5bf2050
884d29f
 
 
faeb088
884d29f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5be315
884d29f
 
 
 
 
 
 
 
 
faeb088
884d29f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
BIOSSES computes similarity of biomedical sentences by utilizing WordNet as the
general domain ontology and UMLS as the biomedical domain specific ontology.
The original paper outlines the approaches with respect to using annotator
score as golden standard. Source view will return all annotator score
individually whereas the Bigbio view will return the mean of the annotator
score.

Note: The original files are Word documents, compressed using RAR. This data
loader uses a version that privides the same data in text format.
"""
import datasets
import pandas as pd

from .bigbiohub import pairs_features
from .bigbiohub import BigBioConfig
from .bigbiohub import Tasks


_DATASETNAME = "biosses"
_DISPLAYNAME = "BIOSSES"

_LANGUAGES = ["English"]
_PUBMED = False
_LOCAL = False
_CITATION = """
@article{souganciouglu2017biosses,
  title={BIOSSES: a semantic sentence similarity estimation system for the biomedical domain},
  author={Soğancıoğlu, Gizem, Hakime Öztürk, and Arzucan Özgür},
  journal={Bioinformatics},
  volume={33},
  number={14},
  pages={i49--i58},
  year={2017},
  publisher={Oxford University Press}
}
"""

_DESCRIPTION = """
BIOSSES computes similarity of biomedical sentences by utilizing WordNet as the
general domain ontology and UMLS as the biomedical domain specific ontology.
The original paper outlines the approaches with respect to using annotator
score as golden standard. Source view will return all annotator score
individually whereas the Bigbio view will return the mean of the annotator
score.
"""

_HOMEPAGE = "https://tabilab.cmpe.boun.edu.tr/BIOSSES/DataSet.html"

_LICENSE = "GPL_3p0"

_URLs = {
    "source": "https://huggingface.co/datasets/bigscience-biomedical/biosses/raw/main/annotation_pairs_scores.tsv",
    "bigbio_pairs": "https://huggingface.co/datasets/bigscience-biomedical/biosses/raw/main/annotation_pairs_scores.tsv",
}

_SUPPORTED_TASKS = [Tasks.SEMANTIC_SIMILARITY]
_SOURCE_VERSION = "1.0.0"
_BIGBIO_VERSION = "1.0.0"


# The BIOSSES dataset does not provide canonical train/dev/test splits.
# However the BLUE and BLURB datasets use the following split definitions.
# see https://github.com/bigscience-workshop/biomedical/issues/664

TRAIN_INDEXES = [
    78,
    45,
    35,
    50,
    27,
    13,
    87,
    1,
    58,
    99,
    55,
    74,
    66,
    39,
    44,
    18,
    84,
    76,
    19,
    10,
    75,
    46,
    15,
    86,
    60,
    14,
    51,
    79,
    29,
    34,
    94,
    28,
    62,
    42,
    21,
    30,
    11,
    53,
    6,
    12,
    26,
    48,
    31,
    32,
    77,
    37,
    95,
    85,
    36,
    56,
    43,
    61,
    16,
    5,
    67,
    65,
    54,
    3,
    73,
    98,
    17,
    4,
    92,
    93,
]
DEV_INDEXES = [
    88,
    82,
    8,
    63,
    47,
    68,
    40,
    90,
    100,
    24,
    41,
    91,
    80,
    9,
    72,
    2,
]
TEST_INDEXES = [
    59,
    96,
    70,
    22,
    81,
    38,
    57,
    23,
    33,
    89,
    69,
    49,
    7,
    71,
    97,
    25,
    83,
    64,
    52,
    20,
]


class BiossesDataset(datasets.GeneratorBasedBuilder):
    """BIOSSES : Biomedical Semantic Similarity Estimation System"""

    DEFAULT_CONFIG_NAME = "biosses_source"
    SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
    BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)

    BUILDER_CONFIGS = [
        BigBioConfig(
            name="biosses_source",
            version=SOURCE_VERSION,
            description="BIOSSES source schema",
            schema="source",
            subset_id="biosses",
        ),
        BigBioConfig(
            name="biosses_bigbio_pairs",
            version=BIGBIO_VERSION,
            description="BIOSSES simplified BigBio schema",
            schema="bigbio_pairs",
            subset_id="biosses",
        ),
    ]

    def _info(self):

        if self.config.name == "biosses_source":
            features = datasets.Features(
                {
                    "id": datasets.Value("int64"),
                    "document_id": datasets.Value("int64"),
                    "text_1": datasets.Value("string"),
                    "text_2": datasets.Value("string"),
                    "annotator_a": datasets.Value("int64"),
                    "annotator_b": datasets.Value("int64"),
                    "annotator_c": datasets.Value("int64"),
                    "annotator_d": datasets.Value("int64"),
                    "annotator_e": datasets.Value("int64"),
                }
            )
        elif self.config.name == "biosses_bigbio_pairs":
            features = pairs_features

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            supervised_keys=None,
            homepage=_HOMEPAGE,
            license=str(_LICENSE),
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):

        my_urls = _URLs[self.config.schema]
        dl_dir = dl_manager.download_and_extract(my_urls)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepath": dl_dir,
                    "split": "train",
                    "indexes": TRAIN_INDEXES,
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "filepath": dl_dir,
                    "split": "validation",
                    "indexes": DEV_INDEXES,
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "filepath": dl_dir,
                    "split": "test",
                    "indexes": TEST_INDEXES,
                },
            ),
        ]

    def _generate_examples(self, filepath, split, indexes):

        df = pd.read_csv(filepath, sep="\t", encoding="utf-8")
        df = df[df["sentence_id"].isin(indexes)]

        if self.config.schema == "source":
            for uid, row in df.iterrows():
                yield uid, {
                    "id": uid,
                    "document_id": row["sentence_id"],
                    "text_1": row["sentence_1"],
                    "text_2": row["sentence_2"],
                    "annotator_a": row["annotator_a"],
                    "annotator_b": row["annotator_b"],
                    "annotator_c": row["annotator_c"],
                    "annotator_d": row["annotator_d"],
                    "annotator_e": row["annotator_e"],
                }

        elif self.config.schema == "bigbio_pairs":
            for uid, row in df.iterrows():
                yield uid, {
                    "id": uid,
                    "document_id": row["sentence_id"],
                    "text_1": row["sentence_1"],
                    "text_2": row["sentence_2"],
                    "label": str(
                        (
                            row["annotator_a"]
                            + row["annotator_b"]
                            + row["annotator_c"]
                            + row["annotator_d"]
                            + row["annotator_e"]
                        )
                        / 5
                    ),
                }